| 研究生: |
林佑錩 Lin, You-Chang |
|---|---|
| 論文名稱: |
使用三次多項式在非均勻網格上之RKDG有限元素法 RKDG Finite Element Methods Using Cubic Polynomials on Non-uniform Mesh |
| 指導教授: |
侯世章
Hou, Suchung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | RKDG有限元素法 、三次多項式 、雙曲線型守恆定律方程式 |
| 外文關鍵詞: | RKDG finite element method, cubic polynomials, hyperbolic conservation law |
| 相關次數: | 點閱:96 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文中主要討論使用RKDG有限元素法去計算波動方程和雙曲線型守恆定律的方程式。數值方面,在空間上運用三次多項式和時間上運用TVD Runge-Kutta去迭代,並運用高斯積分的技巧去取代積分和定義投影函數在其中。 最後模擬一些測試問題並得到一些數值結果。
This thesis discusses about using the RKDG finite element methods to compute wave equations and hyperbolic conservation law. From numerical aspect, apply cubic polynomials in space and TVD Runge-Kutta in time to discretize. Then use the technique of Gaussian integration to replace the ordinary integration and define projection in it. Finally, this thesis simulates some test problems and gets some numerical results.
B. Cockburn, C. W. Shu, emph{"The Runge-Kutta local projection P1-discontinuous
Galerkin method for scalar conservation laws"}, RAIRO Model. Math. Anal. Numer. vol. 25, No. 3, pp. 337-361 (1991).
B. Cockburn, C. W. Shu, emph{"TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for scalar conservation laws II: General framework"},
Math. Comp. vol. 52, No. 186, pp. 411-435 (1989).
B. Cockburn, C. W. Shu; S. Y. Lin, emph{"TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One dimensional
systems"}, J. Comput. Phys. vol. 84, No. 1, pp. 90-113 (1989).
B. Cockburn, Suchung Hou, and Chi-Wang Shu, emph{"The runge-kutta local projection Discontinuous
Galerkin finite element method for conservation laws IV: The multidimensional case"},
Math. Comp. vol. 54, No. 190, pp. 545-581 (1990).
B. Cockburn, emph{"Discontinuous Galerkin methods"}, Plenary lecture presented
at the 80th Annual GAMM Conference, Augsburg, 25-28 March 2002.
Shock Capturing Schemes , II, J. comput. Phys. 32-78, 83(1989).
Claes Johnson, "Numerical solution of partial differential equations by the finite element method", CAMBRIDGE UNIVERSITY PRESS,
Cambridge New York New Rochelle Melbourne Sydney.
陳志明, emph{"A Discontinuous Finite Element Method for Hyperbolic Equations"}, 國立成功大學應用數學系研究所碩士論文, 民國八十三年六月.
S. Jund and S. Salmon, emph{"Arbitrary High-order Finite Element Schemes and Mass Lumping"},
Int. J. Appl. Math. Comput. Sui., Vol.17, No.3, 375-393, 2007.
Randall J.LeVeque, Numerical Methods for Conservation Laws, Second Edition.
Charles C. Dyer and Peter S. S. Ip, An Elementary Introduction to Scientific Computing, January 3, 2000.