| 研究生: |
張慕歆 Chang, Mu-Hsin |
|---|---|
| 論文名稱: |
將緊湊閃爍體陣列探測器安裝於漢翔ASTRA飛機上進行台灣環島宇宙射線量測 Measurement of Cosmic Ray Distributions around Taiwan using ComSAD onboard AIDC's ASTRA aircraft |
| 指導教授: |
楊毅
Yang, Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 宇宙射線 、閃爍體 、探空火箭 、酬載 |
| 外文關鍵詞: | Cosmic rays, Scintillator, Sounding rocket, Payload |
| 相關次數: | 點閱:108 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然界中尚有許多未解之謎,經由測量宇宙射線可以使我們對宇宙有更深的認知。因此我們研發了一個有量測通量、方向、以及宇宙射線能量的能力的小型宇宙射線探測器-緊湊閃爍體陣列探測器(Compact Scintillator Array Detector, ComSAD)。透過安裝於探空火箭上,使其可以達到比氣球實驗更高的高度,以彌補地表及太空之間宇宙射線探測的空缺。
在探空火箭任務之前,我們與漢翔航空公司 (AIDC) 和國家太空中心 (TASA) 合作,將ComSAD探測器放置於漢翔航空公司的ASTRA飛機上進行取數。為此,我們對ComSAD設計了一個酬載,具有獨立的供電系統並能即時儲存資料的功能。透過位置資訊,我們對飛機行經的海拔高度及區域所收集到的資料進行分析。另外,在2022年11月8日,成大團隊於屏東旭海發射場進行火箭試射,上面搭載了ComSAD探測器測試是否能於任務中正常運作,並分析宇宙射線通量隨海拔高度的變化。
在論文中,我會展示ComSAD在ASTRA飛機上經過五次飛試取數以及火箭飛試時取數的結果。
There are many unanswered questions in Nature, and measuring cosmic rays can provide us with a deeper understanding of the Universe. Therefore, we developed a small cosmic ray detector that can measure the flux, direction, and energy of cosmic rays, named Compact Scintillator Array Detector (ComSAD). By equipping it on a sounding rocket, which can reach higher altitudes than balloon experiments, the measurements can fill the gap between cosmic ray detection on the surface and in space.
Prior to the sounding rocket mission, we collaborated with the Aerospace Industrial Development (AIDC) and Taiwan Space Agency (TASA) to install the ComSAD onboard the ASTRA plane of AIDC for data acquisition. For this purpose, we designed a payload for the ComSAD with an independent power supply system and real-time data storage function. With the location information, we analyzed the data collected on the altitude and area that ASTRA traveled through.
On November 8, 2022, the National Cheng Kung University team conducted a test launch of the rocket at the Pingtung, Xu-Hai launch site with ComSAD onboard to test its function during the mission and to analyze the variation of cosmic ray flux with altitude. In the thesis, I will show the results of the ComSAD on the ASTRA plane for five flights and the hybrid rocket mission.
[1] “02: The alpha magnetic spectrometer experiment.” ams02.space (accessed Mar. 2 2023). https://ams02.space/.
[2] “International space station.” nasa.gov (accessed Mar. 2 2023). https://www.nasa.gov/mission_pages/station/main/index.html.
[3] “Icecube neutrino observatory.” icecube.wisc.edu (accessed Mar. 2 2023). https://icecube.wisc.edu/.
[4] Wang, P. K., Chen, C.-Y., Hsu, H.-C., Chang, M.-H., Liu, W. T., Fang, H.-K., Wu, T.-C., Chen, W.-H., Tsai, C. C., Chen, A. B.-C., et al., “Compact scintillator array detector (comsad) for sounding rocket and cubesat missions,” Journal of Astronomical Instrumentation 11(02), 2250007 (2022).
[5] “Twaidc - aerospace industrial development corporation (aidc) in taiwan.” aidc.com.tw/en (accessed Mar. 2 2023). https://www.aidc.com.tw/en/.
[6] “Home - taiwan space agency.” tasa.org.tw/ (accessed Mar. 2 2023). https://www.tasa.org.tw/index.php?ln=en.
[7] Hess, V. F., “Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten,” Phys. Z. 13, 1084–1091 (1912).
[8] KOLHORSTER, W., “Messungen der durchdringenden strahlung im freiballon in grosseren hohen,” Phys. Zeits. 14, 1153–1156 (1913).
[9] Kolhörster, W., “Messungen der durchdringenden strahlungen bis in höhen von 9300 m,” Verh. deutsche phys. Gesellschaft 16, 719–721 (1914).
[10] “The nobel prize.” nobelprize.org (accessed Apr. 27 2023). https://www.nobelprize.org/prizes/physics/1936/summary/.
[11] Anderson, C. D., “The positive electron,” Physical Review 43(6), 491 (1933).
[12] Workman, R. L. and Others, “Review of Particle Physics,” PTEP 2022, 083C01 (2022).
[13] Aguilar, J. A., “Particle Astrophysics Lecture 3,” https://w3.iihe.ac.be/~aguilar/PHYS-467/PA3.pdf (accessed Mar. 2 2023).
[14] Holland, B., Spragg, Z., Kubiak, A., and Elliott, L., Near-Space Muon Flux Detection and Analysis (052017).
[15] Autran, J.-L., Munteanu, D., Saoud, T. S., and Moindjie, S., “Characterization of atmospheric muons at sea level using a cosmic ray telescope,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 903, 77–84 (2018).
[16] Ney, E. P., “Cosmic radiation and the weather,” Nature 183(4659), 451–452 (1959).
[17] Svensmark, H. and Friis-Christensen, E., “Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships,” Journal of Atmospheric and Solar-Terrestrial Physics 59(11), 1225–1232 (1997).
[18] Carslaw, K. S., Harrison, R. G., and Kirkby, J., “Cosmic rays, clouds, and climate,” Science 298(5599), 1732–1737 (2002).
[19] Tanaka, H. K., Gluyas, J., Holma, M., Joutsenvaara, J., Kuusiniemi, P., Leone, G., Lo Presti, D., Mat-sushima, J., Oláh, L., Steigerwald, S., et al., “Atmospheric muography for imaging and monitoring tropic cyclones,” Scientific Reports 12(1), 16710 (2022).
[20] Mirzoyan, R. et al., “The First telescope of the HEGRA air Cherenkov imaging telescope array,” Nucl. Instrum. Meth. A 351, 513–526 (1994).
[21] “Welcome to the cosmic ray physics group.” cosmicray.umd.edu (accessed Mar. 4 2023). https://www.cosmicray.umd.edu/cream/.
[22] Chen, C. Y., “Measuring cosmic rays at different altitude ranges with compact scintillator array detector,”(2021). https://hdl.handle.net/11296/bbucz2.
[23] Wang, P. K., “The r&d of compact scintillator array detector for cosmic ray measurement in sound-ing rocket or cubesat missions,” (2018). https://thesis.lib.ncku.edu.tw/thesis/detail/fce8e97f1cfcec5102e722e10bc3dbb1/.
[24] Boutoux, G., Bélier, G., Chatillon, A., Ebran, A., Gorbinet, T., Laurent, B., Martin, J.-F., Pellereau, E., Taieb, J., Audouin, L., et al., “The sofia experiment,” Physics Procedia 47, 166–171 (2013).
[25] “Sofia overview.” nasa.gov (accessed Mar. 4 2023). https://www.nasa.gov/mission_pages/SOFIA/overview/index.html.
[26] “Bc-400, bc-404, bc-408, bc-412, bc-416.” Crystals (accessed Mar. 2 2023). https://www.crystals.saint-gobain.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416.
[27] Jackson, C., Wall, L., O’Neill, K., McGarvey, B., and Herbert, D., “Ultra-low noise and exceptional uniformity of sensl c-series sipm sensors,” in [Optical Components and Materials XII], 9359, 194–205, SPIE (2015).
[28] “Omega - microelectronic center (uar3605) organisation for micro-electronics design and applica-tions,” (accessed Mar. 2 2023). https://portail.polytechnique.edu/omega/en/products/products-presentation/spiroc.
[29] Agostinelli, S., Allison, J., Amako, K. a., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al., “Geant4—a simulation toolkit,” Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3), 250–303 (2003).
[30] Hagmann, C., Lange, D., and Wright, D., “Cosmic-ray shower generator (cry) for monte carlo transport codes,” in [2007 IEEE Nuclear Science Symposium Conference Record], 2, 1143–1146, IEEE (2007).
[31] “Triton - taiwan space agency.” tasa.org.tw (accessed May. 01 2023). https://www.tasa.org.tw/inprogress.php?c=20030305&ln=en.
[32] “Central weather bureau.” cwb.gov.tw (accessed Apr. 29 2023). https://www.cwb.gov.tw/V8/C/.
[33] “Taipower.” taipower.com.tw (accessed May. 01 2023). https://www.taipower.com.tw/tc/index.aspx.
[34] “Silso | world data center for the production, preservation and dissemination of the international sunspot number.” sidc.be (accessed May. 01 2023). https://www.sidc.be/silso/.