簡易檢索 / 詳目顯示

研究生: 詹依文
Jhan, Yi-Wen
論文名稱: 氮化鎵系列異質結構場效電晶體及金屬-半導體-金屬光檢測器的製備及研究
Fabrication and Study of GaN-Based Heterostructure Field Effect Transistors and Metal-Semiconductor-Metal Photodetectors
指導教授: 張守進
Chang, S.J.
陳志方
Chen, J.F.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 86
中文關鍵詞: 暗電流基板角度中間層覆蓋層光檢測器場效電晶體氮化鎵
外文關鍵詞: vicinal-cut sapphire, dark current, interlayer, PDs, HFETs, cap layer, GaN
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將分成二個部分來討論。在異質結構場效電晶體方面,會利用不同的基板角度(1度及0度角的藍寶石基板),分別探討對AlGaN/GaN及GaN/InGaN異質結構場效電晶體的影響;而在金半金光檢測器中,為了要減少常見的漏電流情形,我們將採用低溫氮化鎵當作高溫氮化鎵的中間層或者當作元件的覆蓋層,來改善漏電情形,以得到更好的元件特性。
    當採用1度基板時,對於AlGaN/GaN及GaN/InGaN異質結構,都可以在低溫時,得到一個比較大的移動率,且表面的缺陷密度也會有顯著的減少;當製作成異質結構場效電晶體後,二者的源極、汲極漏電流也將會明顯減少,這是由於表面的缺陷減少後,也相對地減少了漏電路徑所造成的。另外對於不同基板角度的GaN/InGaN結構,我們也會製作成蕭特基二極體,比較二種元件對於溫度的反應,並求出二者的平均蕭特基位能障,得知採用1度角的基板後,可以提高平均蕭特基位能障及改善元件的熱穩定性。論文中也會藉由一些簡單的材料分析,了解採用1度基板是否會影響結構的表面狀況及成長情形,以說明造成元件特性差異的原因。
    在金半金光檢測器方面,先採用AlGaN/GaN的異質結構來製作具有低溫氮化鎵中間層的金半金光檢測器,可以降低元件的暗電流,並得到一個具有320nm的截止波長,且其UVB對UVA的拒斥比也可獲得提升;接下來再採用之前提到的GaN/InGaN異質結構,製作具有低溫氮化鎵覆蓋層的金半金光檢測器,當加入這層覆蓋層後,暗電流被明顯地減小許多,其截止波長為360nm,且其紫外光對可見面的拒斥比也獲得改善。

    This dissertation is discussed from two parts. In the part of Heterostructure Field Effect Transistors (HFETs), we use two different angle substrates (1° and 0°-tilted sapphire substrates) and study the effects on AlGaN/GaN and GaN/InGaN HFETs, respectively. The other part is for metal-semiconductor-metal photodetectors (MSM PDs) to recude the common problem of leakage current. The low-temperature GaN was used as the interlayer of high-temperature GaN or the cap layer of our devices. To introduce LT-GaN interlayer or cap layer can reduce the leakage current and get a better performance.
    First, the AlGaN/GaN and GaN/InGaN on 1°-tilted substrate had a larger mobility at low-temperature and a much less surface defect density. After those HFETs on vicinal-cut substrate were fabricated, the S-D leakage current was obviously reduced. It is due to less surface dislocation and reducing the path of leakage current. Furthermore, the Schottky diodes of GaN/InGaN on different tilted angle were fabricated. It was used to study the relations between temperature and two devices and get both average Schottky barrier heights. From this result, using 1°-tilted substrate raised the average Schottky barrier height and improved thermal stability. In this dissertation, we also used some simple material analyses to understand whether it affected the surface and growth condition of two structures to introduce 1°-tilted substrate. From those material analyses, it found out the reason for different characteristics.
    For MSM PDs, AlGaN/GaN MSM PD with LT-GaN interlayer was fabricated first. It reduced the dark current and attained a cut-off wavelength 320nm. The UVB-to-UVA rejection ratio was improved. Then, GaN/InGaN mentioned previously was also used to fabricate the MSM PD with LT-GaN cap layer. When the cap layer was added, the dark current was apparently reduced, the cut-off wavelength was 360 nm, and the UV-to-visible rejection ratio was also improved.

    Abstract (in Chinese) Abstract (in English) Acknowledgement Contents Table Captions Figure Captions Chapter 1 Introduction 1-1 Properties and Applications of GaN 1 1-2 Overview of This Dissertation 3 Chapter 2 Theory and Measurement Techniques 2-1Schottky Barrier Height Measurements 5 2-1.1 Current-Voltage Method 5 2-1.2 Current-Temperature Method 6 2-2 X-Ray Diffraction (XRD) System 6 2-3 Secondary Ion Mass Spectroscopy (SIMS) 7 2-4 Photoluminescence (PL) Spectrum System 7 2-5 Responsivity Measurement Systems 8 Chapter 3 Fabrications and Electrical Characteristics of GaN-Based HFETs on Vicinal-Cut Sapphire Substrate 3-1 Theory of Heterostructure Field Effect Transistors (HFETs) 13 3-2 The Background Research on Polarization Effects 14 3-2.1 Introduction of Piezoelectric and Spontaneous Polarization 14 3-2.2 Polarity 17 3-3 The Fabrication Processes of HFETs 19 3-4 Study of AlGaN/GaN HFETs with 1° Mis-Orientation Sapphire Substrate 21 3-4.1 Device Structure and Grown Condition of AlGaN/GaN 21 3-4.2 Characteristics of AlGaN/GaN MES-HFETs 24 3-5 Study of GaN/InGaN HFETs with 1° Mis-Orientation Sapphire Substrate 25 3-5.1 Device Structure and Grown Condition of GaN/InGaN 26 3-5.2 Material Analysis of GaN/InGaN 26 3-5.3 Relation between Temperature and Schottky Barrier Height for GaN/InGaN Schottky diodes 28 3-5.4 DC and RF Characteristics of GaN/InGaN MES-HFETs 28 Chapter 4 Fabrication and Characteristics of MSM UV Photodetectors with Low-Temperature GaN Cap Layer or Low-Temperature GaN Interlayer 4-1 Introduction 58 4-2 Theory of the MSM Photodetector 58 4-3 Fabrication Processes of MSM Photodetectors 60 4-4 Study of AlGaN/GaN MSM PDs with LT-GaN Interlayer 60 4-5 Study of GaN/InGaN MSM PDs with LT-GaN Cap Layer 62 Chapter 5 Conclusion and Future Prospect 5-1 Conclusion 79 5-2 Future Prospect 81 References 82

    Chapter 1
    [1] S. Strite, M.E. Lin and H. Morkoc, Thin Solid Films, Vol. 231, 197 (1993).
    [2] M.A. Khan, M.S. Shur, J.N. Kuzunia, Q. Chen, J. Burm and W. Schaff, Appl. Phys. Lett, Vol. 66, 1083 (1995).
    [3] O. Aktas, Z.F. Fan, S.N. Mmohammand, A.E. Botchkarev and H. Morkoc, Appl. Phys. Lett, Vol. 69, 3872 (1996).
    [4] H.P. Maruska and J.J. Tietjen, Appl. Phys. Lett, Vol. 15, 327 (1969).
    [5] P.B. Perry and R.F. Rutz, Appl. Phys. Lett, Vol. 33, 319 (1978).
    [6] S. Itho, N. Nakayama, S. Matsumoto, M. Nagai, K. Nakano, M. Ozawa, H. Okuyama, S. Tomiya, T. Ohata, M. Ikeda, A. Ishibashi and Y. Mori, Jpn. J. Appl. Phys, Vol. 33, 938 (1994).
    [7] M.A. Khan, J.N. Kuznia, A.R. Bhattarai and K.T. Ilson, Appl. Phys.Lett,Vol. 62, 1786 (1993).
    [8] E.D. Jungbluth,Laser Focus, Vol. 5, 33 (1993).
    [9] S. Nakamura, M. Senoh, S. Nagahama and Y. Sugimoto, Jpn. J. Appl.Phys, Vol. 35, 74 (1996).
    [10] A. Bykhovski, B. Gelmont and M. Shur, J. Appl. Phys, Vol. 74, 6734 (1993).
    [11] P. Kozodoy, M. Hansen, S.P. DenBaars and U.K. Mishra, Appl. Phys.Lett, Vol. 74, 3681(1999).
    [12] M.A. Khan, Q. Chen, M.S. Shur, B.T. Dermott, J.A. Higgins, J. Burm, W. Schaff and L.F. Eastman, Electron. Lett, Vol. 32, 357 (1996).
    [13] S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and H. Kiyoku, Appl. Phys. Lett, Vol. 70, 2753 (1997)
    [14] S. Nakamura, M. Senoh, A. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett, Vol. 72, 2014 (1998);73, 832 (1998)
    [15] Y. M. Hsin, Member, IEEE, H. T. Hsu, C. C. Chuo, and J. I. Chyi, Senior Member, IEEE Electron Device Letters, vol. 22, (2001).
    [16] H. Morkoe, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys, Vol. 76, 1363 (1994).

    Chapter 2
    [1] D.K. Schroder,“ Semiconductor Material and Device Characterization 2nd “.
    [2] P. Ruterana, M. Albrecht, and J. Neugebauer, Nitride Semiconductors : handbook on materials and devices, Wiley-VCH, Weinheim, (2003).
    [3] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett., Vol. 68, 643 (1996)
    [4] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim, and A. Yoshikawa, Appl. Phys. Lett., Vol. 77, 2557 (2000).
    [5] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, Appl. Phys. Lett., Vol. 86, 043108 (2005).
    [6] V. T. Cherepin, Secondary Ion Mass Spectroscopy of Solid Surfaces, VNU Science Press, (1987).
    [7] 成功大學博士論文: Chia-Lin Yu,“ Fibrication and Characterization of GaN-based Photodetectors and Heterostructure Field Effect Transistors with Low Leakage Current”(2007) chap. 2.6.6

    Chapter 3
    [1] A. S. Baker, M. I. Ilegems, Phys. Rev. B., Vol. 7, 743 (1973).
    [2] M. Higashiwaki, T. Matsui, Jpn. J. Appl. Phys.,Vol. 44, L475 (2005).
    [3] H. Ishida, Y. Hirose, T. Murata, Y. Ikeda, T. Matsuno, K. Inoue, Y. Uemoto, T. Tanaka, T. Egawa, D. Ueda, IEEE Trans. Electron Devices, Vol. 52, 1893 (2005).
    [4] N. Tipirneni, A. Koudymov, V. Adivaraban, J. Yang, G. Simin, M. A. Khan, IEEE Electron Device Lett., Vol. 27, 716 (2006).
    [5] P. A. Grudowski, A. L. Holmes, C. J. Eiting, and R. D. Dupuis, Appl. Phys. Lett., Vol. 69, 3626 (1996).
    [6] P. A. Grudowski, A. L. Holmes, C. J. Eiting, R. D. Dupuis, J. Electron. Mater., Vol. 26, 257 (2003).
    [7] R. Grousson, V. Voliotis, N. Grandjean, J. Massies, M. Leroux, and C. Deparis, Phys. Rev. B, Vol. 55, 5253 (1997).
    [8] S. W. Kim, H. Aida, T. Suzuki, Phys. Stat. Sol. (c), Vol. 1, 2483 (2004).
    [9] J. C. Lin, Y. K. Su, W. H. Lan, T. M. Kuan, W. R. Chen, Y. C. Cheng, W. J. Lin, Y. C. Tzeng, H. Y. Shin, Mater. Sci. Eng. B, Vol. 128, 107 (2006).
    [10] J. C. Lin, Y. K. Su, S. J. Chang, W. R. Chen, R. Y. Chen, Y. C. Cheng, W. J. Lin, J. Cryst. Growth, Vol. 285, 481 (2005).
    [11] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Appl. Phys. Lett., Vol. 71, 2794 (1997).
    [12] 成功大學博士論文: Chia-Lin Yu, “ Fibrication and Characterization of GaN-based Photodetectors and Heterostructure Field Effect Transistors with Low Leakage Current” (2007) chap. 2.5
    [13] 成功大學博士論文: Chia-Lin Yu, “ Fibrication and Characterization of GaN-based Photodetectors and Heterostructure Field Effect Transistors with Low Leakage Current” (2007) chap. 5.1
    [14] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys., Vol. 54, 437 (1982).
    [15] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, Vol. 56, R10024 (1997).
    [16] E. S. Hellman, MRS Int. J. Nitride Semicond. Res., Vol. 3, No. 11, (1998).
    [17] M. A. Khan, Q. Chen, M. S. Shur, B. T.McDermott,J. A. Higgins, J.Burm, W. J. Schaff, and L. F. Eastman, IEEE Electron Device Lett., Vol.17, 584 (1996).
    [18] A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A Salvador, S. N. Mohammad, B.Sverdlov, H.Morkoc, Electron.Lett., Vol.31, 1389(1995)
    [19] S. Ruvimov, Z. Lilental-Weber, and J. Washburn. APPL. Phys. Lett. Vol.69 11 (1996).
    [20] C. R. Lee, J. Cryst. Growth, Vol 220, 62 (2000).
    [21] S. Arulkumaran, M. Sakai, T. Egawa, H. Ishikawa, T. Jimbo, T. Shibata, K. Asai, S. Sumiya, Y. Kuraoka, M. Tanaka, and O. Oda, Appl. Phys. Lett., Vol. 81, 1131 (2002).
    [22] L. Hsu, and W. Walukiewicz, Phys. Rev. B, Vol. 56, 1520 (1997).
    [23] S. Karmalkar, D. M. Sathaiya, and M. S. Shur, Appl. Phys. Lett., Vol. 82, 3976 (2003).
    [24] Y. M. Hsin, H. T. Hsu, C. C. Chuo, and J. I. Chyi, IEEE
    Electron. Dev. Lett., vol.22, 501 (2001).
    [25] R. Singh, D. Doppalapudi, T. D. Moustakas, L. T. Romano, Appl. Phys. Lett., vol.70, 1089 (1997).
    [26] C. C. Chuo, C. M. Lee, and J. I. Chyi, Appl. Phys. Lett., Vol.78, 314 (2001).
    [27] T.M. Kuan, S.J. Chang, Y.K. Su et al. Journal of Crystal Growth vol.272 300 (2004)
    [28] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley & Sons, 1981.
    [29] M. A. Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire and G. Neu, Appl. Phys. Lett., Vol. 76, 3807 (2000).
    [30] Z. H. Feng, S. J. cai, K. J. Chen, K. M. Lau, IEEE Electron Device Lett., Vol. 26, 870 (2005).
    [31] R. Vetury, H. Marchand, G. Parish, P. T. Fini, J. P. Ibbetson, S. Keller, J. S. Speck, S. P. DenBaars, U. K. Mishra, Institute of Phys. Conf. Ser., Vol. 162, 177 (1999).
    [32] S. J. Chang, S. C. Wei, Y. K. Su, C. H Liu, S. C. Chen, U. H. Liaw, T. Y. Tsai and T. H. Hsu, Jpn. J. Appl. Phys., Vol. 42, 3316 (2003).
    .
    Chapter 4
    [1] M. Razeghi and A. Rogalski, J. Appl. Phys., Vol. 79, 7433 (1996).
    [2] P. Kozodoy, J. P. lbbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett., Vol. 73, 975 (1998).
    [3] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys., Vol. 83, 6148 (1998).
    [4] E. J. Miller, X. Z. Dang, and E. T. Yu, J. Appl. Phys., Vol. 88, 5951 (2000).
    [5] Y.L. Tsai, J.R. Gong, Journal of Crystal Growth, vol.263 176 (2004).
    [6] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, C. H. Liu, H. Hung, S. M. Wang, Jpn. J. Appl. Phys., Vol. 43, 2008 (2004).
    [7] C. T. Lee, H. W. Chen, and H. Y. Lee, Appl. Phys. Lett., Vol. 82, 4304 (2003).
    [8] L. W. Yin, Y. Hwang, J. H. Lee, R. M. Kolabas, R. J. Trew, and U. K. Mishra, IEEE Electron Device Lett., Vol. 11, 561 (1990).
    [9] M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, G. C. Chi, and J. M. Tsai, J. Appl. Phys., Vol. 94, 1753 (2003).
    [10] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos, and H. Luth, Solide-State Electron., Vol. 41, 25 (1997).
    [11] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey, (1997).

    下載圖示 校內:2012-06-25公開
    校外:2017-06-25公開
    QR CODE