| 研究生: |
彭玠中 Peng, Chieh-Chung |
|---|---|
| 論文名稱: |
濺鍍銦鋅氧化物薄膜應用於鈣鈦礦太陽能電池透明電極之研究 Studies of sputtered Indium Zinc Oxide thin film as transparent electrode for Perovskite Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 濺鍍銦鋅氧化物薄膜 、鈣鈦礦太陽能電池 、串疊型元件 、non-FTO太陽能電池 、可撓式太陽能電池 |
| 外文關鍵詞: | Sputtered indium zinc oxide, Perovskite solar cells, Tandem solar cells, non-FTO solar cells, flexible solar cells |
| 相關次數: | 點閱:170 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用濺鍍的方式沉積銦鋅氧化物 (Indium Zinc Oxide,簡稱IZO) 薄膜,將其製作成能穿透可見光及近紅外光的透明導電薄膜,在可見光區有80~90% 的穿透度,而在近紅外光區有90% 以上的穿透度,薄膜片電阻約為24Ω/□。再將此IZO透明導電薄膜應用於鈣鈦礦太陽能電池的對電極,並藉由緩衝層三氧化鉬 (Molybdenum(VI) oxide,MoO3) 的保護,使濺鍍製程於元件上得以實踐,完成一雙面透光的鈣鈦礦太陽能電池,其最高效率可達16.4%。
我們接著使用此雙面透光鈣鈦礦太陽能電池,與矽晶太陽能電池串疊,完成一鈣鈦礦/矽晶串疊型元件,因鈣鈦礦的能隙 (Band gap) 大小,剛好能不錯的分割矽晶太陽能電池的吸收光譜,所以能將太陽光平均分配給鈣鈦礦及矽晶元件,使兩元件的電流值匹配,而較高能量的光子能由鈣鈦礦元件轉換出較高的電壓,因此提升串疊型元件整體的效率。此鈣鈦礦/矽晶串疊型元件的效率能達到19.5%。
而我們亦利用濺鍍IZO透明導電膜的技術,完成一non-FTO太陽能電池,實現的方法為,將FTO玻璃取代為濺鍍在載玻片上的鈦金屬。鈦金屬於高溫燒結時,表面會形成緻密氧化層,使鈦金屬不會全數生成金屬氧化物,而失去其導電電極的特性,為一能承受高溫的導電電極。此鈦金屬基板製作之non-FTO太陽能電池,效率可達13.8%。最後將此non-FTO元件之結構,應用於康寧的超薄玻璃上 (Corninig glass),完成一效率13.6% 的可撓式鈣鈦礦太陽能電池。
Perovskite solar cells (PSCs) are one of the most promising candidates for next-generation solar cells because of their high power conversion efficiencies and easily fabrication. Recently, light and thermal stability of PSCs are resolved gradually so the commercialization of PSCs can be expected. In this study, we fabricate semitransparent PSCs by sputtering indium zinc oxide (IZO) as counter electrode then make a perovskie / silicon mechanically stacked tandem. These semitransparent PSCs can be an efficiency improvement component for silicon solar cells without any modification on existing silicon solar cells.The semitransparent PSCs show power conversion efficiency (PCE) of 16.4% from front illumination (FTO side) and 15.2% from back illumination (IZO side).We also use the technique of sputtering IZO to make a non-FTO back illumination PSCs by substituting FTO with sputtered Titanium (Ti) thin film and the non-FTO PSCs show PCE of 13.8%. Eventually, we applied the structure of non-FTO PSCs to Corning ultra thin glass to make flexible PSCs and also keep the PCE at 13.6%.
[1] Edmond Becquerel, Comptes Rendus, 9, 561-567, 1839
[2] D. M. Chapin, C. S. Fuller and G. L. Pearson, Journal of Applied Physics, 25, 676, 1954
[3] D. E. Carlson, C. R. Wronski, Applied Physics Letters, 28, 671, 1976
[4] Andrew W. Blakers, Aihua Wang, Adele M. Milne, Jianhua Zhao, Martin A. Green, Applied Physics Letters, 55, 1363, 1989
[5] P. Verlinden, W. Deng, X. Zhang, Y. Yang, J. Xu, Y. Shu, P. Quan, J. Sheng, S. Zhang, J. Bao, F. Ping, Y. Zhang, Z. Feng, ”Strategy, Development and Mass Production of High Efficiency Crystalline Si PV Modules,” Proceedings of the 6th World Conference on PV Energy Conversion, Paper 4sMoO.1.4, 2014
[6] First Solar Press Release, 2014
[7] B.M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, "27.6% Conversion Efficiency, A New Record for Single-Junction Solar Cells Under 1-Sun Illumination," Proceedings of the 37th IEEE Photovoltaic Specialists Conference, no. 11, 2011
[8] Osborne M. Hanergy’s Solibro has 20.5% CIGS solar cell verified by NREL, 8 April 2014 (http://www.pvtech.org/news/hanergys_solibro_has_20.5_cigs_solar_cell_
verified_by_nrel; accessed 24 April 2014)
[9] P.T. Chiu, D.L. Law, R.L. Woo, S. Singer, W.D. Hong, A. Zakaria, J.C. Boisvert, S. Mesropian, R.R. King, N.H. Karam, "Continued progress on direct bonded 5J space and terrestrial cells,” Proceedings of the 40th IEEE Photovoltaic Specialists Conference, 2014
[10] K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto, Proceedings of 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, 2013.
[11] Dr. Frank Dimroth et al. Press Release, 2013
[12] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama, “ Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. Technical Digest,” Proceedings of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, 2011
[13] B. O’Regan, M. Grätzel, Nature, 335, 737, 1991
[14] M. Grätzel, Nature, 414, 338-344, 2001
[15] P. Peumans and S. R. Forrest, Applied Physics Letters, 79, 126, 2001
[16] Jérémie Werner, Ching-Hsun Weng, Arnaud Walter, Luc Fesquet, Johannes Peter Seif, Stefaan De Wolf, Bjoern Niesen, Christophe Ballif, Journal of Physical Chemistry Letters, 7, 161-166, 2016
[17] M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153, 2003
[18] M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley & Sons, New York, 2008
[19] Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for BR Photovoltaic Performance Evaluation
[20] Joseph A. Carson, Solar Cell Research Progress, Nova Science Publishers, 23-39, 2008
[21] Greg P. Smestad, Optoelectronics of Solar Cells, SPIE Publications, 37-44, 2002
[22] Miha Filipic, Philipp Loper, Bjoern Niesen, Stefaan De Wolf, Janez Krc, Christophe Ballif, Marko Topic, Optics Express, 23, A263-A278, 2015
[23] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, Journal of the American Chemical Society, 131, 6050-6051, 2009
[24] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, Nam-Gyu Park, Scientific Reports, 2, 591, 2012
[25] Burschka Julian, Pellet Norman, Moon Soo-Jin, Humphry-Baker Robin, Gao Peng, Nazeeruddin Mohammad K., Grätzel Michael, Nature, 499, 316-319, 2013
[26] Liu Mingzhen, Johnston Michael B., Snaith Henry J., Nature, 501, 395-398, 2013
[27] Chang-Wen Chen, Hao-Wei Kang, Sheng-Yi Hsiao, Po-Fan Yang, Kai-Ming Chiang, Hao-Wu Lin, Advanced Materials, 26, 6647-6652, 2014
[28] Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, Yang Yang, J. Am. Chem. Soc., Journal of the American Chemical Society, 136, 622-625, 2014
[29] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu & Sang Il Seok, Nature Materials, 13, 897-903, 2014
[30] Woon Seok Yang, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Seungchan Ryu, Jangwon Seo, Sang Il Seok, Science,348, 1234-1237, 2015
[31] Nam Joong Jeon, Jun Hong Noh, Woon Seok Yang, Young Chan Kim, Seungchan Ryu, Jangwon Seo & Sang Il Seok, Nature, 517, 476-480, 2015
[32] Michael Saliba, Taisuke Matsui, Ji-Youn Seo, Konrad Domanski, Juan-Pablo Correa-Baena, Mohammad Khaja Nazeeruddin, Shaik M. Zakeeruddin, Wolfgang Tress,Antonio Abate, Anders Hagfeldt and Michael Grätzel, Energy & Environmental Science, 9, 1989-1997, 2016
[33] Michael Saliba, Taisuke Matsui, Konrad Domanski, Ji-Youn Seo, Amita Ummadisingu, Shaik M. Zakeeruddin, Juan-Pablo Correa-Baena, Wolfgang R. Tress, Antonio Abate, Anders Hagfeldt, and Michael Grätzel, Science, 354, 206-209, 2016
[34] EPFL, Sophie WENGER, 2010, Strategies to Optimizing Dye-Sensitized Solar Cells
[35] Global Climate & Energy Project, Program 88, 2013
[36] Colin D. Bailie, M. Greyson Christoforo, Jonathan P. Mailoa, Andrea R. Bowring, Eva L. Unger, William H. Nguyen, Julian Burschka, Norman Pellet, Jungwoo Z. Lee, Michael Grätzel, Rommel Noufi, Tonio Buonassisi, Alberto Salleo and Michael D. McGehee, Energy & Environmental Science, 8, 956-963, 2015
[37] Cristina Roldán-Carmona, Olga Malinkiewicz, Rafael Betancur, Giulia Longo, Cristina Momblona, Franklin Jaramillo, Luis Camacho and Henk J. Bolink, Energy & Environmental Science, 7, 2968-2973, 2014
[38] Cheng Zhang, Dewei Zhao, Deen Gu, Hyunsoo Kim, Tao Ling, Yi-Kuei Ryan Wu, L. Jay Guo, Advanced Materials, 26, 5696-5701, 2014
[39] Enrico Della Gaspera, Yong Peng, Qicheng Hou, Leone Spiccia, Udo Bach, Jacek J. Jasieniak,Yi-Bing Cheng, Nano Energy, 13, 249-257, 2015
[40] Hisashi Uzu, Mitsuru Ichikawa, Masashi Hino, Kunihiro Nakano, Tomomi Meguro, Jos!e Luis Hern!andez, Hui-Seon Kim, Nam-Gyu Park and Kenji Yamamoto, Applied Physics Letters, 106, 013506, 2015
[41] Philipp Löper, Soo-Jin Moon, Sílvia Martín de Nicolas, Bjoern Niesen, Martin Ledinsky, Sylvain Nicolay, Julien Bailat, Jun-Ho Yum, Stefaan De Wolfa and Christophe Ballif, Physical Chemistry Chemical Physics, 17, 1619-1629, 2015
[42] Miha Filipič, Philipp Löper, Bjoern Niesen, Stefaan De Wolf, Janez Krč, Christophe Ballif and Marko Topič, Optics Express, 23, A263-A278, 2015
[43] Jonathan P. Mailoa, Colin D. Bailie, Eric C. Johlin, Eric T. Hoke, Austin J. Akey, William H. Nguyen, Michael D. McGehee and Tonio Buonassisi, Applied Physics Letters, 106, 121105, 2015
[44] Steve Albrecht, Michael Saliba, Juan Pablo Correa Baena, Felix Lang, Lukas Kegelmann, Mathias Mews, Ludmilla Steier, Antonio Abate, Jörg Rappich, Lars Korte, Rutger Schlatmann, Mohammad Khaja Nazeeruddin, Anders Hagfeldt, Michael Grätzel and Bernd Rech, Energy & Environmental Science, 9, 81-88, 2016
[45] Yanli Liu, Yufang Li, and Haibo Zeng, Journal of Nanomaterials, 2013, 9, 2013
[46] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature, 432, 488, 2004
[47] Shawn Sanctis, Rudolf C. Hoffmann and Jörg J. Schneider, RSC Advances, 3, 20071-20076, 2013
[48] Mark T Greiner and Zheng-Hong Lu, NPG Asia Materials, 5, e55, 2013
[49] Hyangki Sung, Namyoung Ahn, Min Seok Jang, Jong-Kwon Lee, Heetae Yoon, Nam-Gyu Park, Mansoo Choi, Advanced Energy Material, 6, 1501873, 2016
[50] Molang Cai, Yongzhen Wu, Han Chen, Xudong Yang, Yinghuai Qiang, and Liyuan Han, Advanced Science, 4, 1600269, 2016
[51] Bo Holmberg, ACTA Chemica Scandinavica, 16, 1245-1250, 1962
校內:2020-01-20公開