簡易檢索 / 詳目顯示

研究生: 李承家
Li, Cheng-Chia
論文名稱: 碳熱還原含鎳層狀矽酸鹽製備之鎳觸媒應用於乙醯丙酸氫化為γ-戊內酯: 氮摻雜的效應
Ni/SiO2 Catalysts Derived from Carbothermal Reduction of Nickel Phyllosilicate in the Hydrogenation of Levulinic Acid to γ-Valerolactone: The Efficacy of Nitrogen Decoration
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 層狀矽酸鹽碳熱還原法氫化乙醯丙酸
外文關鍵詞: carbothermal reduction, hydrogenation, N-dopped, levulinic acid, phyllosilicate
相關次數: 點閱:90下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用碳熱還原法來還原鎳頁矽酸鹽 (nickel phyllosilicate, NiPS),合成具有碳保護之層狀矽酸鹽並應用於乙醯丙酸氫化為γ-戊內酯之研究。在S3M1.5@NiPS-600觸媒下可以發現其具有最高的γ-戊內酯的產率 (>90%) 及極佳的觸媒穩定性(在5次的重複性測試中只有4.9 %的初始效率降低),其原因是包覆在鎳頁矽酸鹽周圍的碳和氮,碳會在鎳頁矽酸鹽上形成保護,使其更加穩定,而氮會和鎳頁矽酸鹽中未配對的Ni2+進行電子交換,產生Ni+(>2),即為一個新的強酸性點位,新增的強酸性點位和還原出來的Ni0形成協同作用,讓氫氣裂解的速度提升許多,也因此讓γ-戊內酯的產率更加的提高。

    A carbothermal reduction method was developed to synthesize protective Ni catalysts derived from Ni phyllosilicates (NiPS). The carbon-grafted, reduced NiPS catalysts were investigated and their application in the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was revealed. The most promising catalyst was synthesized by using sucrose-melamine mixture (molar ratio = 2:1) as the reducing agent at a high temperature (600 oC isotherm for 2 h). A high LA conversion (94.6%), GVL yield (91.2%) and good stability (5 cycles with a 4.9% loss of initial activity) were obtained. The promising result was attributed to grafted carbon and nitrogen species on carbothermally reduced nickel phyllosilicates. Grafted carbon can improve the stability and the nitrogen species induce an electron transfer with the uncoordinated Ni2+ to form Ni+(>2) with a strong lewis acid site. The synergy effect between Ni+ and Ni0 is effective in hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) and enhance the productivity.

    摘要 I Abstract II 誌謝 XII 目錄 XIII 圖目錄 XVIII 表目錄 XXIII 第一章 前言 1 1-1 引言 1 1-2 研究動機與設計 2 第二章 文獻回顧 3 2-1 生物質衍生物加氫催化之應用 3 2-1-1 乙醯丙酸加氫反應為γ-戊內酯之相關研究 4 2-2層狀矽酸鹽之簡介 7 2-3 層狀矽酸鹽應用於觸媒催化 8 2-4 含鎳層狀矽酸鹽應用於加氫反應 10 2-5 碳熱還原法之應用 12 2-6 碳熱還原之碳源選擇 13 第三章 實驗 15 3-1 X 射線繞射儀 (XRD) 15 3-2 X 射線吸收光譜 17 3-3 氮氣恆溫吸脫附儀 19 3-4 X射線光電子能譜分析(X-ray photoelectron spectroscopy, XPS) 21 3-5 高解析度穿透式電子顯微鏡 (HR-TEM) 22 3-6 拉曼光譜儀 (Raman Spectrometer) 23 3-7 高解析感應耦合電漿質譜分析儀 (ICP-MS) 24 3-8 熱重分析儀 (TGA) 25 3-9 自動化學吸脫附儀 26 3-9-1 氫氣程溫還原反應 (H2-TPR) 27 3-9-2 氨氣程序升溫脫附 (NH3-TPD) 28 3-9-3 一氧化碳脈衝化學吸附 (CO pulses chemisorption) 29 3-9-4 氫氣程溫脫附反應(H2-TPD) 31 3-9-5 丙酮氫氣程溫脫附反應 (Acetone TPD with hydrogen) 32 3-10 傅立葉轉換紅外光譜儀 (FTIR) 33 3-11 元素分析儀 (Elemental Analyzer, EA) 36 3-12 氣相層析儀 (GC) 37 3-13 觸媒製備 38 3-13-1 觸媒命名方式 40 3-14 觸媒活性測試 41 3-15 產物定性與定量分析 43 3-16 本質活性計算 44 3-17 觸媒失活 (deactivation) 計算 45 3-18 實驗室設備與藥品 46 第四章 結果與討論 48 4-1 觸媒X-ray繞射結果 48 4-2 觸媒之穿透式電子顯微鏡成像 50 4-3 X 射線吸收圖譜 53 4-4 觸媒比表面積、孔徑分佈及組成分析 56 4-5 碳熱還原觸媒之拉曼光譜分析 59 4-6 觸媒之熱重質譜分析 60 4-7 觸媒氫氣程溫還原 63 4-8 觸媒金屬活性點位計算 65 4-9 觸媒氨氣程溫脫附 66 4-10 觸媒 Pyridine-IR測試 67 4-11 X射線光電子能譜分析 71 4-12 觸媒活性測試 73 4-12-1 乙醯丙酸加氫活性測試 73 4-12-2 觸媒之乙醯丙酸重複性測試 76 4-12-3 觸媒失活程度測試 80 4-13 動力學分析 83 4-14 丙酮氫氣程溫脫附反應 86 4-15 觸媒氫氣程溫脫附 88 4-16 觸媒對乙醯丙酸氫化之反應機制推測 89 4-17 觸媒對乙醯丙酸氫化之活化能計算 90 第五章 結論 92 參考資料 93

    1. Armaroli, N. and V. Balzani, The hydrogen issue. ChemSusChem, 2011. 4(1): p. 21-36.
    2. Cherubini, F., The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 2010. 51(7): p. 1412-1421.
    3. Malico, I., et al., Current status and future perspectives for energy production from solid biomass in the European industry. Renewable and Sustainable Energy Reviews, 2019. 112: p. 960-977.
    4. Xu, Q., et al., Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry, 2016. 18(5): p. 1287-1294.
    5. Yan, K., et al., Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, 2015. 51: p. 986-997.
    6. Yan, K., et al., Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Applied Catalysis B: Environmental, 2015. 179: p. 292-304.
    7. R.V. Christian, H.D.B., R.M. Hixon, J. Am. Chem, Soc. 69, 1947: p. 1961-1963.
    8. Manzer, L.E., Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Applied Catalysis A: General, 2004. 272(1-2): p. 249-256.
    9. Z.-p. Yan, L.L., S. Liu, Energy Fuels 23, 2009: p. 3853-3858.
    10. Mohan, V., et al., Ni/H-ZSM-5 as a promising catalyst for vapour phase hydrogenation of levulinic acid at atmospheric pressure. RSC Advances, 2014. 4(19).
    11. Shimizu, K.-i., S. Kanno, and K. Kon, Hydrogenation of levulinic acid to γ-valerolactone by Ni and MoOx co-loaded carbon catalysts. Green Chem., 2014. 16(8): p. 3899-3903.
    12. Lv, J., et al., Highly efficient conversion of biomass-derived levulinic acid into γ-valerolactone over Ni/MgO catalyst. RSC Advances, 2015. 5(88): p. 72037-72045.
    13. Hengst, K., et al., Synthesis of γ-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts. Applied Catalysis A: General, 2015. 502: p. 18-26.
    14. Kumar, V.V., et al., Role of Brønsted and Lewis acid sites on Ni/TiO2 catalyst for vapour phase hydrogenation of levulinic acid: Kinetic and mechanistic study. Applied Catalysis A: General, 2015. 505: p. 217-223.
    15. Rodiansono, R., et al., Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catalysis Science & Technology, 2016. 6(9): p. 2955-2961.
    16. Li, W., et al., Highly Efficient Vapor-Phase Hydrogenation of Biomass-Derived Levulinic Acid Over Structured Nanowall-Like Nickel-Based Catalyst. ChemCatChem, 2016. 8(16): p. 2724-2733.
    17. Jiang, K., et al., Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO–Al2O3 supported Ni catalyst. Catalysis Today, 2016. 274: p. 55-59.
    18. Sun, D., et al., Vapor-phase hydrogenation of levulinic acid and methyl levulinate to γ-valerolactone over non-noble metal-based catalysts. Molecular Catalysis, 2017. 437: p. 105-113.
    19. Song, S., et al., Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Applied Catalysis B: Environmental, 2017. 217: p. 115-124.
    20. Fang, S., et al., In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to γ-valerolactone. Journal of Energy Chemistry, 2019. 37: p. 204-214.
    21. Duarte, H., et al., Clay Mineral Nanotubes: Stability, Structure and Properties. 2012.
    22. Bian, Z. and S. Kawi, Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today, 2020. 339: p. 3-23.
    23. Kim, J.S., et al., Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. Adv Mater, 2017. 29(21).
    24. Qiu, C., J. Jiang, and L. Ai, When Layered Nickel-Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Appl Mater Interfaces, 2016. 8(1): p. 945-51.
    25. Yang, Y., et al., Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Research, 2011. 4(9): p. 882-890.
    26. Rong, Q., et al., Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Applied Energy, 2015. 153: p. 63-69.
    27. Zhao, J., et al., 1D Co2.18Ni0.82Si2O5(OH)4 architectures assembled by ultrathin nanoflakes for high-performance flexible solid-state asymmetric supercapacitors. Journal of Power Sources, 2015. 285: p. 385-392.
    28. Zhao, J., et al., Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for High-Performance Supercapacitors. Advanced Materials Interfaces, 2015. 2(2).
    29. Qu, S., et al., Preparation of silicate nanotubes and its application for electrochemical sensing of clozapine. Materials Letters, 2013. 102-103: p. 56-58.
    30. Yuan Zhuang, Y.Y., Guolei Xiang, and Xun Wang, Magnesium Silicate Hollow Nanostructures as Highly Efficient Absorbents for Toxic MetalIons. J. Phys. Chem. C, 2009. 113(10441–10445).
    31. Yang, Y., et al., Fine tuning of the dimensionality of zinc silicate nanostructures and their application as highly efficient absorbents for toxic metal ions. Nano Research, 2010. 3(8): p. 581-593.
    32. Zheng, Y., et al., Poly(methacrylic acid)-graft-Ni3Si2O5(OH)4 multiwalled nanotubes as a novel nanosorbent for effective removal of copper(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 502: p. 89-101.
    33. Wang, Y., et al., Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment. Chemistry, 2010. 16(11): p. 3497-503.
    34. Lvov, Y., et al., Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv Mater, 2016. 28(6): p. 1227-50.
    35. Sivaiah, M.V., et al., Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous and Mesoporous Materials, 2011. 140(1-3): p. 69-80.
    36. Sivaiah, M.V., et al., CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors. Catalysis Today, 2010. 157(1-4): p. 397-403.
    37. Yan, H., et al., Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction: optimization of Cu content. Applied Catalysis B: Environmental, 2018. 226: p. 182-193.
    38. Wang, Z.-Q., et al., High-Performance and Long-Lived Cu/SiO2 Nanocatalyst for CO2 Hydrogenation. ACS Catalysis, 2015. 5(7): p. 4255-4259.
    39. Kong, X., et al., Ni Nanoparticles Inlaid Nickel Phyllosilicate as a Metal–Acid Bifunctional Catalyst for Low-Temperature Hydrogenolysis Reactions. ACS Catalysis, 2015. 5(10): p. 5914-5920.
    40. Du, H., et al., Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol. Catalysis Today, 2020.
    41. Shen, Y., Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. Journal of Materials Chemistry A, 2015. 3(25): p. 13114-13188.
    42. Wang, X.-H., et al., Synthesis and characterization of molybdenum carbides using propane as carbon source. Journal of Solid State Chemistry, 2006. 179(2): p. 538-543.
    43. SWIFT, G.A., Tungsten powder from carbon coated WO3 precursors. JOURNAL OF MATERIALS SCIENCE, 2001. 36(803– 806).
    44. Hang Leung, Y., et al., Changing the shape of ZnO nanostructures by controlling Zn vapor release: from tetrapod to bone-like nanorods. Chemical Physics Letters, 2004. 385(1-2): p. 155-159.
    45. Lim, Y.S., et al., Effect of carbon source on the carbothermal reduction for the fabrication of ZnO nanostructure. Applied Surface Science, 2006. 253(3): p. 1601-1605.
    46. Leung, Y.H., et al., Zinc oxide ribbon and comb structures: synthesis and optical properties. Chemical Physics Letters, 2004. 394(4-6): p. 452-457.
    47. RODRIGUEZ-REINOSO, F., The role of carbon materials in heterogeneos catalyst*. Carbon 1998. 3: p. 159-175.
    48. Wang, H., et al., Carbothermal reduction method for Fe3O4 powder synthesis. Journal of Alloys and Compounds, 2010. 502(2): p. 338-340.
    49. Hu, P., et al., Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction. Journal of Alloys and Compounds, 2011. 509(5): p. 2316-2319.
    50. Wu, H., L. Wang, and H. Wu, Synthesis, characterization and microwave absorption properties of dendrite-like Fe3O4 embedded within amorphous sugar carbon matrix. Applied Surface Science, 2014. 290: p. 388-397.
    51. Wang, J., et al., Constructing Co@N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural. Applied Catalysis B: Environmental, 2020. 263.
    52. Genuino, H.C., et al., Catalytic Hydrogenation of Renewable Levulinic Acid to γ-Valerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. ACS Sustainable Chemistry & Engineering, 2020. 8(15): p. 5903-5919.
    53. Ngo, D.T., T. Sooknoi, and D.E. Resasco, Improving stability of cyclopentanone aldol condensation MgO-based catalysts by surface hydrophobization with organosilanes. Applied Catalysis B: Environmental, 2018. 237: p. 835-843.
    54. Rudolf P. W. J. Struis, D.B., Christian Ludwig, and Alexander Wokaun, Studying the Formation of Ni3C from CO and Metallic Ni at T ) 265 °C in Situ Using Ni K-Edge X-ray Absorption Spectroscopy. J. Phys. Chem. C, 2009. 113(2443–2451).
    55. Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10): p. 1051-1069.
    56. Di, W., et al., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Applied Catalysis A: General, 2016. 510: p. 244-259.
    57. van den Berg, R., et al., Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy. J Am Chem Soc, 2016. 138(10): p. 3433-42.
    58. Sadezky, A., et al., Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 2005. 43(8): p. 1731-1742.
    59. Camino, L.C.a.G., Thermal behavior of melamine. Journal of Thermal Analysis, 1988. 34(423-429).
    60. Liang, G., et al., The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 2014. 309: p. 468-476.
    61. William L. Earl, P.O.F., Atholl A. V. Gibson, and Jack H. Lunsford, A Solid-State NMR Study of Acid Sites in Zeolite Y Using Ammonia and Trimethylamine as Probe Molecules. J. Phys. Chem. C, 1987. 91(2091-2095).
    62. Zaki, M., M. a. Hasan, F. a. Al-Sagheer and L. Pasupulety. Colloids Surfaces A Physicochem. Eng. Asp, 2001. 190: p. 261-274.
    63. Emeis, C., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis, 1993. 141(2): p. 347-354.
    64. Hengne, A.M., et al., Ni–Sn-supported ZrO2 catalysts modified by indium for selective CO2 hydrogenation to methanol. ACS omega, 2018. 3(4): p. 3688-3701.
    65. Li, X., et al., Mott–Schottky Effect Leads to Alkyne Semihydrogenation over Pd-Nanocube@N-Doped Carbon. ACS Catalysis, 2019. 9(5): p. 4632-4641.
    66. Schüth, F., M.D. Ward, and J.M. Buriak, Common pitfalls of catalysis manuscripts submitted to chemistry of materials. 2018, ACS Publications.
    67. Lange, J.P., Renewable feedstocks: the problem of catalyst deactivation and its mitigation. Angewandte Chemie International Edition, 2015. 54(45): p. 13186-13197.
    68. Takeda, Y., et al., Hydrogenation of dicarboxylic acids to diols over Re–Pd catalysts. Catalysis Science & Technology, 2016. 6(14): p. 5668-5683.
    69. Chen, K., et al., C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. Journal of catalysis, 2012. 294: p. 171-183.
    70. Nakajima, K., et al., ACS Sustainable Chem. Eng, 2019. 7: p. 6522-6530.
    71. Takeda, Y., et al., Characterization of Re–Pd/SiO2 catalysts for hydrogenation of stearic acid. ACS Catalysis, 2015. 5(11): p. 7034-7047.
    72. Wiesfeld, J.J., et al., Selective hydrogenation of 5-hydroxymethylfurfural and its acetal with 1, 3-propanediol to 2, 5-bis (hydroxymethyl) furan using supported rhenium-promoted nickel catalysts in water. Green Chemistry, 2020. 22(4): p. 1229-1238.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE