簡易檢索 / 詳目顯示

研究生: 陳冠年
Chen, Kuan-Nien
論文名稱: 應用區域法求解紊流場之數值研究
Numerical Study on Turbulence Channel Flow by Means of Zonal Approach
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 47
中文關鍵詞: 數值方法區域法
外文關鍵詞: numerical method, zonal approach
相關次數: 點閱:44下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以區域法(Zonal approach)切割紊流流場,其最大優點是可簡化具複雜幾何外型之計算,並能夠以區域分割之觀念,於叢集式(Cluster)計算發揮良好應用。

      模擬的物理問題包含:將背向階梯流(Backward Facing Step Flow)區分成數個區塊計算,並與Direct Numerical Simulation (DNS)直接數值模擬資料做比較,證明其程式正確性。其次,紊流模式選用k-ε模式之Abe et al.(1994)以及k-ω模式之Shear Stress Transport(1994)兩種作為測試,俾使能得到良好之參考價值。最後以具有收集槽以及饋料口之實際渠道流(Channel Flow)為題進行模擬,以說明其應用性。

     The study aims at applying the Zonal approach to turbulent flow field computation. The zonal approach, wherein the given region is subdivided into zones and the grid for each zone is generated independently, makes the grid-generation process for the objects with geometric complexity and for the regions requiring selective grid refinement a fairly simple task.

     Two test problems are investigated. First one is to calculate the backward facing step flow field, whose region is divided into several sub-domains by means of the zonal approach, and then compare the predicted results with the available Direct Numerical Simulation (DNS) data to validate of computer code. The turbulence models, including the low-Reynolds-number k-ε model developed by Abe et al. (1994) and the k-ω model developed by Menter(1994), and tested in the study. The zonal approach is , then , applied to the flow field simulation of a gravitational setting chamber for demonstration.

    中文摘要 英文摘要 誌謝 目錄……………………………………………………………………i 表目錄…………………………………………………………………iii 圖目錄…………………………………………………………………iv 符號說明………………………………………………………………vii 第一章 緒論……………………………………………………………1 1.1 前言…………………………………………………………1 1.2 文獻回顧……………………………………………………2 1.3 研究目的……………………………………………………5 第二章 理論模式………………………………………………………7 2.1 紊流模式…………………………………………………………7 2.2 數學模式…………………………………………………………9 第三章 數值方法………………………………………………………13 3.1 區域法……………………………………………………………13 3.2 氣相數值方法……………………………………………………15 3.3 邊界條件…………………………………………………………16 第四章 結果與討論……………………………………………………17 4.1 背向階梯流流場…………………………………………………17 4.2 渠道流流場加顆粒收集槽………………………………………18 4.3 包含顆粒收集槽之渠道流流場外加顆粒進料口………………19 第五章 結論及建議……………………………………………………22 5.1 結論………………………………………………………………22 5.2 建議與未來工作…………………………………………………22 參考文獻……………………………………………………………… 23 附表與圖……………………………………………………………… 27 附錄A

    參考文獻

    Abe, K., Kondoh, T., and Nagano, Y., “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows―I. Flow-Filed Calculations,” Int. J. Heat Mass Transfer, Vol. 37, 1994, pp. 139-151.
    Asano, K., Funayama, Y., Yatsuzuka, K., and Higashiyama, Y., 1995,
    “Spherical Particle Sorting by Using Droplet Deflection Technology,” J.
    Electrostatics, Vol. 35,pp. 3-12.
    Atta, E. “Component Adaptive Grid Interfacing,” AIAA Paper, No. 81-0382,St. Louis, Mo., 1981.
    Cambier, L. Ghazzi, W. Veuillot, J. P. and Viviand, H. “Une Approache par Domaines pour le Calcul d’Ecoulements Compressibles,” Cinquieme Colloque International sur les Methodes de Calcul Scientifique et Technique, INRIA, Versailles, France, December 14-18, 1981.
    Chakravarthy, S. R., Szema, K. Y., Goldberg, U. C., Gorski, J. J. and Osher, S. (1985). “Application of a New Class of High Accuracy TVD Schemes to the Navier-Stokes Equations,” AIAA Paper 85-0165, Reno, Nevada.
    Chang, K. C., Wu, W. J., “Numerical Boundary Condition at the Interface in a Confined Flow Computation,” Computers Fluids Vol. 21, No.4, pp.571-581, 1992.
    Craft, T. J., Launder, B. E., and Suga, K., “Development and Application of a Cubic Eddy- Viscosity Model of Turbulence,” Int. J. Heat Fluid Flow, Vol. 17, 1996, pp. 108-115.
    Crowe, C. T., Troutt, T. R., and Chung, J. N., “Numerical Models for Two-phase Turbulent Flow,” Annual Review of Fluid Mechanics, Vol. 28. 99. 11-43, 1996.
    Hsu, M. C., Vogiatzis, K., and Huang, P. G.,” Validation and Implementation of Advanced Turbulence Models in Separated and Swirling Flows,” The 10th National Computational Fluid Dynamics Conference, Hua-Lien, Taiwan, R.O.C., August 2003.
    Hsu, C. H., Chang, K. C., “Development of a Low-Reynolds-Number Nonlinear Eddy Viscosity Model”, The 10th National Conference on Computational Fluid Dynamics, Hua-Lien, Taiwan, R.O.C., August 2003.
    Menter, F. R. “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications” AIAA Journal, Vol.32 No.8 pp.1598-1605, 1994.
    Patankar, S. V., “Numerical Heat Transfer and Fluid Flow” HemiSphere
    Washington D. C.,1980
    Rai, M. M. “A conservation treatment of zonal boundaries for Euler equation calculations” J. Comput. Phys. 62,472(1986)
    Rhie, C. M. and Chow, W. L. 1983, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA Journal Vol.21, pp.1525-1532.
    Sarkar A. and So, R. M. C., “A critical evaluation of near-wall two-equation models against direct numerical simulation data,“ Int. J. Heat and Fluid Flow, Vol. 18, No. 2, pp.197-208,1997
    Suzen, Y. B., Huang, P. G., 2003, “Numerical Simulation of Wake Passing on Turbine Cascades,” AIAA Paper, AIAA-2003-1256, 41st Aerospace Science Meeting and Exhibit, Jan.
    Wang, C. C. and Chang, K. C., 1995 “Numerical Simulation on the Wall Transport process via the Near-Wall Low-Reynolds-number Turbulence Model and Body Fitted Coordinates System,” Master Thesis, Institute of Aeronautics and Astronautics National Cheng Kung University, Taiwan R.O.C.
    Wilcox, D. C.(1993), “Turbulence Modeling for CFD,”DCW Industries, Inc. La Canada, California.

    中文參考文獻

    王覺寬、張克勤、賴維祥、徐明生,”超微粒金屬焊料製造及分級
    技術研究”,行政院國家科學委員會產學合作研究計畫報告,計畫編號:NSC 92-2622-E-006-002,2004。
    呂偉福, ”氣動力應用於粉末分離之研究”,成功大學航太所碩
    士論文,2003。
    吳昭輝,”以側向風力篩選粉末之數值研究” ,成功大學航太所碩
    士論文,2002。

    下載圖示 校內:立即公開
    校外:2005-08-13公開
    QR CODE