簡易檢索 / 詳目顯示

研究生: 封之遠
Feng, Zhi-Yuan
論文名稱: 多層重設型債劵選擇權之評價
The Valuation of Bond Options with Multiple Reset Rights
指導教授: 王明隆
Wang, Ming-Long
劉裕宏
Liu, Yu-Hong
學位類別: 博士
Doctor
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 64
中文關鍵詞: 多點重置選擇權債劵選擇權Hull-White模型
外文關鍵詞: Multiple Reset Options, Bond Option, Hull-White Model
相關次數: 點閱:79下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用單因子Hull-White模型評價具有重設條款之債劵選擇權,此選擇權應用之重設條款共有三種,第一種的條款為單點重設,此條款規定此債劵選擇權於存續期間可重設一次履約價格。而第二種則為第一種條款的一般化情況,選擇權於存續期間可重設 次履約價。第三種為最一般化的情形,不但可以於存續期間比較 次時點的股價而且可以重設 次履約價。不僅如此,本篇研究也運用風險中立的概念獲得幾何平均亞式重置債劵選擇權的封閉解,再利用此公式得到算術平均亞式重置債劵選擇權的近似封閉解。由數值分析的結果我們可了解此近似封閉解不但十分準確,且運算速度十分快速,因此易於實務界人士從事避險的工作。最後,本篇文章是近來從事重設型商品研究中範圍十分深入的一篇研究,相信對於未來評價重設型相關商品之文獻必有所貢獻。

    This study proposes a pricing formula to price bond options with an adjustable strike price at one predetermined reset date, multiple predetermined reset dates, even m reset levels with continuous reset dates by setting the forward rate as a numeraire. Moreover, this investigation applies the martingale technique to examine the pricing formula for a reset feature embedded in the continuous geometric average of Asian derivatives, and further uses this formula to approximate an analytic solution for continuous arithmetic average of Asian derivatives. The numerical results show that our approximate analytic solution is faster than the traditional approach, which is quite important for hedging in the real world, and has acceptable accuracy. Finally, the algorithm hedge parameter formulas are also presented in our study.

    Chapter 1 Thesis Introduction 1 Chapter 2 The Model 7 2.1 The Extended Vasicek Model 8 2.2 The Relationship between Forward and Risk Neutral Mmeasure 9 2.3 The Valuation of the Reset Bond Option with a Predetermined Date 11 2.4 The Valuation of the Reset Bond Option with Multiple Predetermined Dates 16 2.5 The Valuation of Reset Bond Option with M Reset Levels 20 2.6 The Valuation of the Continuous Asian Average Reset Bond Option 24 Chapter 3 Numerical Results 30 Chapter 4 Conclusions 36 References 37 Appendix A 39 Appendix B 43 Appendix C 45 Appendix D 51 Appendix E 53 Appendix F 57 Appendix G 63

    [1] Acharya, V. V., John, K., and Sundaram, R. K., 2000, On the optimality of resetting executive stock options, Journal of Financial Economics 57, 65-101.
    [2] Asbjorn, T. H. and Jorgensen, P. L., 2000, Analytical valuation of American-Style Asian options, Management Science 46, 1116-1136.
    [3] Bjork, T., 1998, Arbitrage theory in continuous time, Oxford.
    [4] Brenner, M., Sundaram, R. K., and Yermack, D., 2000, Altering the terms of executive stock options, Journal of Financial Economics 57, 103-128.
    [5] Cox, J., Ingersoll, J., and Ross, S., 1985, A theory of the term structure of interest rates, Economrtrica 53, 385-408.
    [6] Cheng, W. and Zhang, S., 2000, The analytics of reset options, Journal of Derivatives 8, 59-71.
    [7] Chance, D. M., Kumar, R., and Todd, R. B., 2000, The ‘repricing’ of executive stock options, Journal of Financial Economics 57, 129-154.
    [8] Gray, S. F. and Whaley, R. E., 1997, Valuing bear market reset warrants with a periodic reset, Journal of Derivatives 10, 59-74.
    [9] Gray, S. F. and Whaley, R. E., 1999, Reset put option: valuation, risk characteristic, and an application, Australian Journal of Management 24, 1-20.
    [10] Hull, J. and White, A., 1990, Pricing interest-rate-derivative securities, The Review of Financial Studies 3, 573-592.
    [11] John, E. A., 1999, A note on pricing Asian derivatives with continuous geometric averaging, The Journal of Futures Markets 19, 845-858.
    [12] Kuan, W. C. and Lyuu, Y. D., 2007, Accurate pricing formulas for Asian options, Applied Mathematics and Computation 181, 1171-1724.
    [13] Kemna, A. and Vorst, A., 1990, A pricing method for options based on average asset values, Journal of Banking and Finance 14, 113-129.
    [14] Levy, E., 1992, The valuation of average rate currency options, Journal of International Money and Finance 11, 474-491.
    [15] Liao, S. L. and Wang, C. W., 2002, Pricing arithmetic average reset options with control variates, Journal of Derivatives 10, 59-74.
    [16] Liao, S. L. and Wang, C. W., 2003, The valuation of reset options with multiple strike resets and reset dates, The Journal of Futures Markets 23, 87-107.
    [17] Li, S. J., Li, S. H., and Sun, C., 2007, A generalization of reset options pricing formulate with stochastic interest rates, Research in International Business and Finance 21, 119-133.
    [18] Liu, Y. H., Jiang, I. M., Lee, S. C., and Cheng, Y. T., 2011, The valuation of reset option when underlying assets are autocorrelated, The International Journal of Business and Finance Research 5, 95-114.
    [19] Turnbull, S. M. and Wakeman, L. M., 1991, A quick algorithm for pricing European average options, The Journal of Financial and Quantitative Analysis 26, 377-389.
    [20] Vasicek, O. A., 1977, An equilibrium characterization of the term structure, Journal of Financial Economics 5, 177-188.
    [21] Vorst, T., 1992, Prices and hedge ratios of average exchange rate options, International Review of Financial Analysis 1, 179-193.

    下載圖示 校內:2014-12-26公開
    校外:2014-12-26公開
    QR CODE