簡易檢索 / 詳目顯示

研究生: 黃冠學
Huang, Guan-Shiue
論文名稱: Ba8Ga16-xSi30+x和Ba8-yGa16Si30合金的熱電性質之研究
Study of thermoelectric properties in the clathrate compounds Ba8Ga16-xSi30+x and Ba8-yGa16S30
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 52
中文關鍵詞: 籠狀化合物熱電材料
外文關鍵詞: Clathrate compound, thermoelectric material
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 籠狀化合物由於它們的結構,被期待著具有好的熱電特性。多面體籠子內填充著鹼土族原子,由於鹼土族原子在籠子內振動,造成聲子散射,降低晶格熱導率,以其達到較高的ZT值。
    本篇論文研究的是Ba8Ga16-xSi30+x (x= -1,0,1) and Ba8-yGa16S30 (y= 0,1,2) 一系列的籠形化合物。這些樣品由電弧熔融arc melting技術來製備; 為了得知是否摻雜在正確的位置,再經由x-ray 散射得知結構。結構正確後,測量其電阻值、熱傳導率、Seebeck coefficient。
    我們發現Ba8Ga16Si30在室溫(T=300 K)擁有最高的ZT值 0.06。並估計900 K時Ba8Ga17Si29 的 ZT值大約為1.01 高於 Ba8Ga16Si30的ZT=0.89,因為Ba8Ga17Si29在高溫時具有較高的Seebeck coefficient 及較低的電阻率。

    Clathrate compounds are expected to have good thermoelectric property; because of their structure. The guest atoms are included in the host cages. Because of weak interaction between the guest and framework atoms, rattling motion can make the lattice thermal conductivity lower, so it may have higher figure-of-merit, ZT.
    This paper is for Ba8Ga16-xSi30+x (x= -1,0,1) and Ba8-yGa16S30 (y=0,1,2) clathrate compounds. They are prepared by arc-melting and characterized for their structure by x-ray diffraction, electrical resistivity, Seebeck coefficient and thermal conductivity measurements.
    It is found that the Ba8Ga16Si30 has the biggest ZT=0.06 in room temperature (T=300 K). We estimated that Ba8Ga17Si29 has ZT=1.01 at T=900 K bigger than Ba8Ga16Si30 whose ZT is 0.89 at the same temperature, because Ba8Ga17Si29 has a higher Seebeck coefficient and a lower electrical resistivity.

    Absract 3 摘要 4 誌謝 5 目錄 6 第一章 前言 9 1-1熱電材料簡介 1-2 AxByC46-y 籠狀化合物簡介 第二章 實驗原理 14 2-1電傳導率(Electrical conductivity) 2-2 熱傳導率(Thermal conductivity) 2-3 熱電效應 2-3.1 Seebeck 效應 2-3.2 peltier 效應 2-3.3 Thomson 效應 2-4 熱電優值ZT(Figure of merit) 第三章 樣品的製備與量測 33 3-1樣品製備 3-2 物性參數量測 3-2.1 X-ray量測 3-2.2 電阻率量測 3-2.3 熱傳導率量測 3-2.4 Seebeck coefficient 量測 第四章 結果與數據討論分析 38 4-1 X-ray分析 4-2電導率量測結果與分析 4-3熱傳導率量測結果與分析 4-4 Seebeck coefficient量測結果與分析 4-5熱電優值Figure of merit(ZT)結果與分析 第五章 結論 48 參考文獻 圖目錄 圖1-1 金屬、半導體和絕緣體熱電性質圖1 8 圖1-2 熱電材料ZT值對溫度關係圖2 9 圖1-3 第一型籠狀化合物結構圖 11 圖1-4 (a)Ba為十四面體(b)為Ba在十二面體 12 圖2-1 熱傳導聲子碰撞過程 (a)正常過程、(b)例逆過程 22 圖2-2 Seebeck效應示意圖 24 圖4-1 Ba8Ga16-xSi30+x的X-ray繞射圖 37 圖4-2 Ba8-yGa16Si30的X-ray繞射圖 38 圖4-3 Ba8Ga16-xSi30+x的電阻率對溫度關係圖 40 圖4-4 Ba8-yGa16Si30的電阻率對溫度關係圖 40 圖4-5 Ba8Ga16-xSi30+x的熱傳導率對溫度關係圖 41 圖4-6 Ba8-yGa16Si30的熱傳導率對溫度關係圖 42 圖4-7 Ba8Ga16-xSi30+x的Seebeck coefficient對溫度關係圖 44 圖4-8 Ba8-yGa16Si30的Seebeck coefficient對溫度關係圖 44 圖4-9 Ba8Ga16-xSi30+x的ZT對溫度關係圖 46 圖4-10 Ba8-yGa16Si30的ZT對溫度關係圖 46

    1.Z.H. Dughaish, “Lead telluride as a thermoelectric material for thermoelectric power generation” Physica B. 322, 205(2002).
    2.Mercouri G. Kanatzidis, Chem. Mater. 22 ,648 (2010).
    3.V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, and D. M. Rowe, J. Appl. Phys. 87, 7871 (2000) .
    4.Liyan Qiu, Ian P. Swainson, George S. Nolas,and Mary Anne White, Physical Review B. 70, 035208 (2004).
    5.C.Kittle, Introduction to Solid State Physics, 8th ed. New York. Wiley,Ch4-6.(1996).
    6.Shang-Feng Weng, “Chemical pressure effect on the thermoelectric properties of SrSi2”, NCKU, Department of Physics . (2012).
    7. Wen-Shin Sun, “Study of Nb substitution on the thermoelectric properties of Fe2VGa”,NCKU, Department of Physics . (2010).
    8.Devaraj Nataraj, Jiro Nagao, Marhoun Ferhat, and Takao Ebinuma,J. Appl. Phys. 93, 2424 (2003).
    9.Joseph R. Sootsman, Duck Young Chung, and Mercouri G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).
    10.Marion C. Schäfer, Yuki Yamasaki, Veronika Fritsch , and Svilen Bobev, Crystals, 1, 145, (2011).
    11.Deng Shukang,Tang Xinfeng,Xiong Cong,and Zhang Qingjie, 28,4 (2007)
    12.R Shirataki, M Hokazono, T Nakabayashi and H Anno, IOPscience.18, 142001
    13.J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, Physical Review Letters. 82, 779 (1999).
    14.Eric S. Toberer, M. Christensen, B. B. Iversen, and G. Jeffrey Snyder, Physical Review B. 77, 075203 (2008).
    15.A. Saramat, G. Svensson, A. E. Palmqvist, C. Stiewe, E. Mueller et al. , J. Appl. Phys. 99,023708(2006).
    16.G. S. Nolas, J.-M. Ward and J. Gryko, L. Qiu and M. A. White, Phys. Rev. B.64, 153201 (2001 ) .
    17.G. S. Nolas and C. A. Kendziora, Phys. Rev. B.62, 7157 (2000 ) .
    18.G. S. Nolas, T. J. R. Weakly, J. L. Cohn, and R. Sharma, Phys. Rev. B. 61,
    3845 (2000 ) .
    19.R. F. W. Herrmann, K. Tanigaki, T. Kawaguchi, S. Kuroshima, and O.
    Zhou, Phys. Rev. B .60, 13245 (1999 ) .
    20.B.C. Sales, R.J. Chakoumakos, J.R. Thompson, D. Mandrus, Phys. Rev. B.63,245113 (2001).
    21.Tetsuji Kawaguchi, Katsumi Tanigaki, and Masahiro Yasukawa, Appl. Phys. Lett. 77, 3438 (2000).
    22.S. B. Schujman, G. S. Nolas, R. A. Young, C. Lind, A. P. Wilkinson et al. J. Appl. Phys. 87, 1529 (2000 ).
    23.A. Bentien, B. B. Iversen, J. D. Bryan, G. D. Stucky, A. E. C. Palmqvist et al. J. Appl. Phys. 91, 5694 (2002).
    24.C. Candolfi, U. Aydemir, M. Baitinger, N. Oeschler, F. Steglich, and Yu . Grin, J. Appl. Phys. 111, 043706 (2012).
    25.J. D. Bryan, V. I. Srdanov, and G. D. Stucky, D. Schmidt, Phys. Rev. B .60, 3064 (1999).
    26.A. Bentien, M. Christensen, J. D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G. D. Stucky, and B. B. Iversen, Phys. Rev. B. 69, 045107 (2004).
    27.K. Suekuni, M. A. Avila, K. Umeo, and T. Takabatake, Phys. Rev. B. 75,195210 (2007)
    28.M. Falmbigl, G. Rogl, P. Rogl, M. Kriegisch, H. Mu¨ller, E. Bauer, M. Reinecker, and W. Schranz,J. Appl. Phys. 108, 043529 (2010)
    29.I. Zeiringer, E. Bauer, A. Grytsiv, P. Rogl, and H. Effenberger, Jpn. J.
    Appl. Phys. 50, 05FA01 (2011).
    30.N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, G. Giester, St. Berger, H.
    Kaldarar, G. Durand, H. Michor, F. Ro¨hrbacher, M. Koza, E. Royanian, E.
    Bauer, M. Rotter, and H. J. Schmid: J. Phys.: Condens. Matter. 19
    046203(2007).
    31.B. C. Chakoumakos, B. C. Sales, D. G. Mandrus, and G. S. Nolas, J.
    Alloys Compd. 296, 80 (2000) .
    32.N. P. Blake, D. Bryan, S. Latturner, L. Mo ” llnitz, G. D. Stucky, and H.
    Metiu, J. Chem. Phys. 114, 10063 (2001 ).
    33.N. P. Blake, D. Bryan, S. Latturner, G. D. Stucky, and H. Metiu. J. Chem.
    Phys. 115, 8060 (2001)
    34.L. T. K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann,
    U. Burkhardt, J. Custers, A. Haghighirad, R. Ho¨fler, K. D. Luther, et al.,
    Dalton Trans. 39, 1071 (2010)
    35.U. Aydemir, C. Candolfi, A. Ormeci, Y. Oztan, M. Baitinger, N. Oeschler,
    F. Steglich, and Yu. Grin, Phys. Rev. B. 84, 195137 (2011)
    36.N. Jaussaud, P. Gravereau, S. Pechev, B. Chevalier, M. Me´ne´trier, P. Dordor,R. Decourt, G. Goglio, C. Cros, and M. Pouchard,C. R. Chim. 8, 39 (2005).
    37.J. Xu, J. Tung, K. Sato, Y. Tanabe, H. Miyasaka, M. Yamashita, S. Heguri,
    and K. Tanigaki, Phys. Rev. B. 82, 085206 (2010).
    38.T. Mori, K. Iwamoto, S. Kushibiki, H. Honda, H. Matsumoto, N. Toyota,
    M. A. Avila, K. Suekuni, and T. Takabatake, Phys. Rev. Lett. 106, 015501
    (2011).
    39.K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, and T. Takabatake, Phys. Rev. B. 77, 235119 (2008).
    40.M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T.
    Takabatake, Appl. Phys. Lett. 92, 041901 (2008).
    41.N. Tsujii, J. H. Roudebush, A. Zevalkink, C. A. Cox-Uvarov, G. J. Snyder,
    and S. M. Kauzlarich,J. Solid State Chem. 184, 1293 (2011).
    42.Deng Shu-Kang , Tang Xin-Feng , and Tang Run-Sheng, Chinese Phys. B . 18 3084 (2009).

    下載圖示 校內:2014-09-13公開
    校外:2014-09-13公開
    QR CODE