| 研究生: |
吳立文 Wu, Li-Wen |
|---|---|
| 論文名稱: |
管內流強迫對流之熱傳逆算問題研究 Study on Inverse Heat Transfer Problems of Force Convection in Circular Pipe |
| 指導教授: |
陳朝光
Chen, Chao-Kuang 楊玉姿 Yang, Yue-Tzu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 管流 、數值方法 、逆運算 、共軛熱傳 |
| 外文關鍵詞: | Pipe Flow, Numerical Method, Inverse Method, Conjugate Heat Transfer |
| 相關次數: | 點閱:143 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用線性最小均方根誤差法(linear least-squares error method)來求解有限加熱/冷卻區段之層流與紊流管流的穩態共軛熱傳逆向問題(Inverse Heat Transfer Problem, IHTP),分析過程並不忽略管壁的熱傳導作用。藉由流體內的少數量測點來估測外管壁上之溫度、熱通量或者隔熱層的不規則幾何邊界形狀。並且,結合函數指定法(Function Specification Method, FSM)於管流的暫態共軛熱傳逆算問題,估測隨時間而變的入口流溫度與外管壁熱通量。
首先,使用有限差分法(finite-difference method)將欲求解之管流穩態熱傳逆問題的統御方程式離散化(discretization),以建構一線性矩陣方程式。藉由排列逆問題之矩陣方程式,使未知狀態(如邊界條件、初始條件、熱傳係數等)可用一行矩陣(column matrix)明確地表示出來;再以有限點之溫度量測資料代入此線性模型中,利用線性最小均方根誤差法將問題最佳化以求解此逆模型。為增進管流暫態熱傳逆問題解析運算之穩定與準確性,在排列出模型的矩陣方程式後,合併導入未來時間原理,並指定待估測值的未來時間函數,最後再以線性最小均方根誤差法求得穩定、準確之估測值。
本文中利用直接問題(direct problem)所求得的溫度值來模擬實際的溫度量測,並考慮量測誤差大小對於估測結果的影響;也將探討量測位置與量測點數目左右估測結果之準確度的程度。結果顯示量測點位置愈靠近待測標的,其準確度愈高;也確認本逆算法於量測誤差為3%時,仍可求得令人滿意的估測結果。
本方法在分析物理問題時,可以避開以往傳統方法所須利用的迭代程序,也因此不需初始猜測值;僅利用一次的運算程序,即可直接解出未知條件,所以計算上較一般傳統方法快速與精確。
文中分別使用循次函數指定法(Sequential Function Specification Method, SFSM)與本文所使用的全域函數指定法(Whole Domain Function Specification Method, WDFSM)來分析層流管流的暫態共軛熱傳逆算問題,以比較其優缺點;並且於全域法中分別比較兩種未來時間之未知狀態元素的典型假設(常數與線性)對於估測結果的影響。最後,本文並提出一個簡單函數修正法來增進估測值的準確度。本文所提的逆向矩陣法合併函數指定法可應用於一維、二維甚至三維之問題,故此方法可成為研究逆問題之一有效方法。
This study addresses the inverse problem of a finite cooled/heated length on the heat transfer characteristics of laminar or turbulent flows through thick-walled circular tubes. Using temperature measurements taken at several different locations within the fluid, the linear least-squares-error method is used to estimate the unknown heat flux on the external surface of the circular pipe and the unknown shape of the thermal insulation. Furthermore, the function specification method is used to estimate the time-varying inlet temperature and the outer-wall heat flux simultaneously on the basis of temperature measurements taken at two different locations within the pipe flow.
While determining the steady unknown boundary conditions of the pipe flow, the present approach in this study rearranges the matrix forms of the governing differential equations, and then combines the reverse matrix method and the linear least-squares-error method. Another study about a transient inverse heat transfer problem is solved using a whole domain estimated technique with the function specification method and the linear least-squares-error method to determine the unknown boundary conditions of the pipe flow.
The temperature data obtained from the direct problem are used to simulate the temperature measurement, and the influence of errors in these measurements upon the precision of the estimated results is considered. This study also considers the influence of the locations and numbers of sensors used upon the accuracy of the estimated results. The results indicate that the accuracy of the estimated results is improved by taking temperature measurements in locations close to the unknowns. The results confirm that the proposed methods are capable of yielding accurate results even when errors in the temperature measurements are present.
The proposed methods provide several advantages compared to traditional methods: (1) it yields a solution within a single computational iteration, (2) no prior information is required regarding the functional form of the quantities of interest, (3) no initial guesses of the unknown parameter values are required, and (4) the inverse problem can be solved in a linear domain.
This study also compares the application of the whole domain function specification method (WDFSM) and the sequential function specification method (SFSM) to the inverse problem of transient conjugate heat transfer of laminar forced convection in a circular pipe. These two inverse methods are used to estimate the time-varying inlet temperature and the outer-wall heat flux simultaneously on the basis of temperature measurements taken at two different locations within the pipe flow. The numerical results reveal that the estimations obtained from the WDFSM method are marginally better than those obtained from the SFSM approach.
Finally, the performance of two classical algorithms (e.g. uniform and linear function) used in the whole domain function specification method (WDFSM) to obtain simultaneous estimates of the time-varying inlet temperature and outer-wall heat flux are compared. Additionally, this study proposes a modification to the linear assumption employed in the conventional WDFSM method to improve its estimation performance. The numerical results confirm that the proposed algorithm yields slightly more accurate estimates of the unknowns than the two classic algorithms.
1. Bernier, M. A. and Baliga, B. R., Conjugate conduction and laminar mixed convection in vertical pipes for upward flow and uniform wall heat flux, Num. Heat Transfer Part A, 21, pp. 313-332, 1992.
2. Campo, A. and Schuler, C., Heat transfer in laminar flow through circular tubes accounting for two-dimensional wall conduction, Int. J. Heat Mass Transfer, 31, pp. 2251-2259, 1988.
3. Faghri, M. and Sparrow, E. M., Simultaneous wall and fluid axial conduction in laminar pipe-flow heat transfer, ASME J. Heat Transfer, 102, pp. 58-63, 1980.
4. Mori, S., Sakakibara, M. and Tanimoto, A., Steady heat transfer to laminar flow in circular tube with conduction in the tube wall, Heat Transfer Jpn. Res., 3(2), pp. 37-46, 1974.
5. Zariffeh, E. K., Soliman, H. M. and Trupp, A. C., The combined effects of wall and fluid axial conduction on laminar heat transfer in circular tubes, Proc. 7th Int. Heat Transfer Conf. Munich, Germany , 4 , pp. 131-136, 1982.
6. Beck, J. V., Blackwell, B. and St. Clair, C. R., Inverse heat conduction-ill-posed problem, Wiley, New York, 1985.
7. Beck, J. V., Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, 62-HT-46, 1962.
8. Beck, J. V., Surface heat determination using an integral method, Nucl. Eng. Des., 7, pp. 170-178, 1968.
9. Beck, J. V., Nonlinear estimation applied the nonlinear inverse heat conduction problem, Int. J. Heat Mass Transfer, 13, pp. 703-716, 1970.
10. Özisik, M. N. and Orlande, H. R. B., Inverse heat transfer: fundamentals and applications, Taylor & Francis, New York, 2000.
11. Alifanov, O. M., Inverse heat transfer problem, Springer-Verlag, New York, 1994.
12. Alifanov, O. M. and Mikhailov, V. V., Solution of the nonlinear inverse thermal conductivity problem by the iteration method, J. of Eng. Phys., 35, pp. 1501-1506, 1978.
13. Alifanov, O. M., Solution of an inverse problem of heat conduction by iteration methods, J. of Eng. Phys., 26(4), pp. 471-476, 1974.
14. Alifanov, O. M. and Artyukhin, F. A., Regularized numerical solution of nonlinear inverse heat-conduction problem, J. of Eng. Phys., 29, pp. 934-938, 1975.
15. Alifanov, O. M., Identification of processes of heat container apparatus. An introduction to the theory of inverse problem of heat transfer, Machinery publisher, Moscow, 1979.
16. Alifanov, O. M., Inverse boundary value problem of heat conduction, J. of Eng. Phys., 25, 1975.
17. Chen, H. T. and Chang, S. M., Application of the hybrid method to inverse heat conduction problems, Int. J. Heat Mass Transfer, 33(4), pp. 621-628, 1990.
18. Chen, H. T. and Lin, J. Y., Analysis of two-dimensional hyperbolic heat conduction problems, Int. J. Heat Mass Transfer, 37(1), pp. 153-164, 1994.
19. Chen, H. T., Lin, S. Y., Wang, H. R. and Fang, L. C., Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, 45, pp. 15-23, 2002.
20. Chen, H. T., Lin, S. Y. and Fang, L. C., Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, 44, pp. 1455-1463, 2001.
21. Chen, H. T., Lin, J. Y., Wu, C. H. and Huang, C. H., Numerical algorithm for estimating temperature-dependent thermal conductivity, Numerical Heat Mass transfer, Part B, 29, pp. 509-522, 1996.
22. Huang, C. H. and Özisik, M. N., Conjugate gradient method for determining unknown contact conductance during metal casting, Int. J. Heat Mass Transfer, 35, pp. 1779-1786, 1992.
23. Huang, C. H. and Özisik, M. N., Inverse problem of determining the unknown strength of an internal plate heat source, J. Franklin Inst., 329, pp. 751-764, 1992.
24. Huang, C. H., Ju, T. M. and Tseng, A. A., The estimation of surface thermal behavior of the working roll in hot rolling process, Int. J. Heat Mass Transfer, 38(6), pp. 1019-1031, 1995.
25. Huang, C. H. and Wu, J. Y., An inverse problem of determining two boundary heat fluxes in unsteady heat conduction of thick-walled circular cylinder, Inverse Problems in Engineering, 1(2), pp. 133-151, 1995.
26. Huang, C. H. and Wu, J. Y., Function estimation in predicting temperature-dependent thermal conductivity without internal measurements, J. of Thermophysics and Heat Transfer, 9(4), pp. 667-673, 1995.
27. Huang, C. H. and Wu, J. Y., Two-dimensional inverse problem of estimating heat fluxes inside internal combustion engines, J. Appl. Phys., 76(1), pp. 133-141, 1994.
28. Huang, C. H. and Yan, J. Y., An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity, Int. J. Heat Mass Transfer, 38(18), pp. 3433-3441, 1995.
29. Maillet, D., Degiovanni, A. and Pasquetti, R., Inverse heat conduction applied to the measurement of heat transfer coefficient on a cylinder: comparison between an analytical and a boundary element technique, ASME J. of Heat Transfer, 113, pp. 549-557, 1991.
30. Martin, T. J. and Dulikavich, G. S., Inverse determination of steady heat convection coefficient distributions, ASME J. of Heat Transfer, 120, pp. 328-334, 1998.
31. Lin, J. H., Chen, C. K. and Yang, Y. T., An inverse method for simultaneous estimation of the center and surface thermal behavior of a heated cylinder normal to a turbulent air stream, ASME J. of Heat Transfer, 124, pp. 601-608, 2002.
32. Kim, S. K. and Lee, W. I., An inverse method for estimating thermophysical properties of fluid flowing in a circular duct, Int. Comm. Heat Mass Transfer, 29(8), pp. 1029-1036, 2002.
33. Kim, S. K. and Lee, W. I., Solution of inverse heat conduction problems using maximum entropy method, Int. J. Heat Mass Transfer, 45, pp. 381-391, 2002.
34. Su, Jian and Hewitt, G. F., Inverse heat conduction problem of estimating time-varying heat transfer coefficient, Numer. Heat Transfer A, 45, pp. 777-789, 2004.
35. Sawaf, B., Özisik, M. N. and Jarny, Y., An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic, Int. J. Heat Mass Transfer, 38(16), pp. 3005-3010, 1995.
36. Moutsoglou, A., An inverse convection problem, J. Heat Transfer, 111, pp. 37-43, 1989.
37. Moutsoglou, A., Solution of an elliptic inverse convection problem using a whole domain regularization technique, J. Thermophys. Heat Transfer, 4, pp. 341-349, 1990.
38. Huang, C. H. and Özisik, M. N., Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate, Numer. Heat Transfer A, 21, pp. 55-70, 1992.
39. Machado, H. A. and Orlande, H. R. B., Inverse analysis of estimating the timewise and spacewise variation of the wall heat flux in a parallel plate channel, Int. J. Num. Meth. Heat Fluid Flow, 7, pp. 696-710, 1997.
40. Li, H. Y. and Yan, W. M., Inverse convection problem for determining wall heat flux in annular duct flow, ASME J. of Heat Transfer, 122, pp. 460-464, 2000.
41. Bokar, J. C. and Özisik, M. N., An inverse analysis for estimating the time-varying inlet temperature in laminar flow inside a parallel plate duct, Int. J. Heat Mass Transfer, 38(1), pp. 39-45, 1995.
42. Kakac, S., Li, W. and Cotta, R. M., Unsteady laminar forced convection in ducts with periodic variation of inlet temperature, J. Heat Transfer, 112, pp. 913-920, 1990.
43. Colaco, M. J. and Orlande, H. R. B., Inverse forced convection problem of simultaneous estimation of two boundary heat fluxes in irregularly shaped channels, Numer. Heat Transfer Part A, 39, pp. 737-760, 2001.
44. Huang, C. H. and Chen, W. C., A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method, Int. J. Heat Mass Transfer, 43, pp. 3171-3181, 2000.
45. Park, H. M. and Chung, O. Y., Inverse natural convection problem of estimating wall heat flux, Chem. Eng. Sci., 55, pp. 2131-2141, 2000.
46. Park, H. M. and Chung, O. Y., Inverse natural convection problem of estimating wall heat flux using a moving sensor, J. Heat Transfer, 121, pp. 828-836, 1999.
47. Prud’homme, M. and Nguyen, T. H., Solution of inverse free convection problems by conjugate gradient method: effects of Rayleigh number, Int. J. Heat Mass Transfer, 44(11), pp. 2011-2027, 2001.
48. Park, H. M. and Jung, W. S., The Karhunen-Loeve Galerkin method for the inverse natural convection problem, Int. J. Heat Mass Transfer, 44(1), pp. 155-167, 2001.
49. Park, H. M. and Chung, J. S., A sequential method of solving inverse natural convection problems, Inverse Problems, 18, pp. 529-546, 2002.
50. Park, H. M. and Lee, J. H., A method of solving inverse convection problem by means of mode reduction, Chemical Engineering Science, 53(9), pp. 1731-1744, 1998.
51. Liu, F. B. and Özisik, M. N., Simultaneous estimation of fluid thermal conductivity and heat capacity in laminar duct flow, J. Franklin Inst., 33B, pp. 583-591, 1996.
52. Kakac, S. and Li, W., Unsteady turbulent forced convection in a parallel-plate channel with timewise variation of inlet temperature, Int. J. Heat Mass Transfer, 37, pp. 447-456, 1994.
53. Liu, F. B. and Özisik, M. N., Inverse analysis of transient turbulent forced convection inside parallel plates, Int. J. Heat Mass Transfer, 39, pp. 2615-2618, 1996.
54. Su, Jian and Silva Neto, A. J., Simultaneous estimation of inlet temperature and wall heat flux in turbulent circular pipe flow, Num. Heat Transfer Part A, 40, pp. 751-766, 2001.
55. Su, Jian, Lopes, Adriane B. and Silva Neto, A. J., Estimation of unknown wall heat flux in turbulent circular pipe flow, Int. Comm. Heat Mass Transfer, 27(7), pp. 945-954, 2000.
56. Li, H. Y. and Yan, W. M., Identification of wall heat flux for turbulent forced convection by inverse analysis, Int. J. Heat Mass Transfer, 46, pp. 1041-1048, 2003.
57. Yang, C. Y. and Chen, C. K., The boundary estimation in two-dimensional inverse heat conduction problems, J. Phys. D: Appl. Phys, 29, pp. 333-339, 1996.
58. Yang, C. Y., A sequential method to estimate the strength of the heat source based on symbolic computation, Int. J. Heat Mass Transfer, 41, pp. 2245-2252, 1998.
59. Yang, C. Y., Inverse estimation of mix-typed boundary conditions in heat conduction problems. J. Thermophys. Heat Transfer, 12, pp. 552-561, 1998.
60. Yang, C. Y., The determination of two heat sources in an inverse heat conduction problem, Int. J. of Heat Mass Transfer, 42, pp. 345-356, 1999.
61. Chantasiriwan, S., Inverse heat conduction problem of determining time-dependent heat transfer coefficient, Int. J. Heat Mass Transfer, 42, pp. 4275-4285, 2000.
62. Chantasiriwan, S., An algorithm for solving multidimensional inverse heat conduction problem, Int. J. of Heat Mass Transfer, 44, pp. 3823-3832, 2001.
63. Behbahani-nia, A. and Kowsary, F., A dual reciprocity BE-based sequential function specification solution method for inverse heat conduction problems, Int. J. Heat Mass Transfer, 47, pp. 1247-1255, 2004.
64. Kim, T. G. and Lee, Z. H., Time-varying heat transfer coefficients between tube-shaped casting and metal mold, Int. J. Heat Mass Transfer, 40, pp. 3513-3525, 1997.
65. Kalman, R. E., A new approach to linear filtering and prediction problems, Trans. ASME 82D, pp. 35-45, 1990.
66. Pfahl, R. C. Jr., Nonlinear least-squares: a method for simultaneous thermal property determination in ablating polymeric materials, J. Appl. Polym. Sci., 10(8), pp. 1111-1119, 1966.
67. Sorenson, H. W., Parameter estimation: principles and problems, Marcel Dekker, New York, 1980.
68. Yang, C. Y., Noniterative solution of inverse heat conduction problems in one dimension, Communications in Numerical Methods in Engineering, 13(6), pp. 419-427, 1997.
69. Shaw, Jinsiang, Noniterative solution of inverse problems by the linear least square method, Applied Mathematical Modelling, 25, pp. 683-696, 2001.
70. Tikhnov, A. N. and Arsenin, V. Y., Solution of ill-posed problems, Winston and Sons, Washington, D. C, 1997.
71. Chantasiriwan, S., Comparison of three sequential function specification algorithms for the inverse heat conduction problem, Int. Comm. in Heat and Mass Transfer, 26, pp. 115-124, 1999.
72. Kays, W. M. and Crawford, M. E., Convective heat and mass transfer, Third Edition, McGraw-Hill, New York, pp. 246-249, 1993.
73. Reichardt, H., Vollstndige Darstellung der Turbulenten Geschwindigkeitsverteilung in Glatten Leitungen, ZAMM, 31, pp. 208-219, 1951.
74. Hitier, B., Calculation and conclusions based on temperature measurements in the bottom of No. 1 blast furnace of CSC, Savoie Refractories, France, private communication, Jul., 1997.
75. Suh, Y. K., Cho, C. M. and Lee, H. K., Evaluation of mathematical model for estimating refractory wear and solidified layer in the blast furnace hearth, The 1st Int’l congress of science and technology of iron marking, ISIJ, Sendai, Japan, pp. 223-228, 1994.
76. Yoshikawa, F., Nigo, S., Kiyohara, S., Taguchi, S., Takahashi, H. and Ichimiya, M., Estimation of refractory wear and solidified layer distribution in the blast furnace hearth and its application to the operation, Iron and Steel, pp. 2068-2075, 1987.
77. Huang, C. H., An inverse geometry problem in estimating frost growth on an evaporating tube, Heat and Mass Transfer, 38, pp. 615-623, 2002.
78. Choi, C. Y. and Jo, J. C., BEM solution with minimal energy technique for the geometrical inverse heat conduction problem in a doubly connected domain, ASME Journal of Pressure Vessel Technology, 125, pp. 109-117, 2003.
79. Huang, C. H. and Chao, B. H., An inverse geometry problem in identifying irregular boundary configurations, Int. J. Heat Mass Transfer, 40(9), pp. 2045-2053, 1997.
80. Huang, C. H. and Chen, C. W., A boundary-element-based inverse problem of estimating boundary conditions in an irregular domain with statistical analysis, Numer. Heat Transfer, Part B, 33, pp. 251-268, 1998.
81. Huang, C. H. and Chen, H. M., Inverse geometry problem of identifying growth of boundary shapes in a multiple region domain, Numer. Heat Transfer, Part A, 35, pp. 435-450, 1999.
82. Hsieh, C. K. and Kassab, A. J., A general method for the solution of inverse heat conduction problem with partially unknown system geometries, Int. J. Heat Mass Transfer, 29, pp. 47-58, 1986.
83. Sahin, A. Z. and Kalyon, M., Maintaining uniform surface temperature along pipes by insulation, Energy, 30, pp. 637-647, 2005.