| 研究生: |
鄭致杰 Cheng, Chih-Chieh |
|---|---|
| 論文名稱: |
結合接面場效電晶體和PIN二極體結構的矽波導調變器 Silicon Waveguide Modulators Incorporating the Hybrid Structures of Junction Field-Effect Transistors (JFET) and p-i-n Diodes |
| 指導教授: |
莊文魁
Chuang, Ricky W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 載子注入 、調變器 、矽 |
| 外文關鍵詞: | modulator, carrier injection, silicon |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們已經製作並且描繪出一個工作波段在1.55微米的矽基板光波導調變器,它的結構包含了接面場效電晶體和PIN二極體,並且結合了脊狀波導,而元件的基板是重摻雜矽基板,並且在這之上磊晶一層輕摻雜的矽磊晶層。除此之外,光調變機制是經由自由載子散射效應來達成,最重要的是,這個元件成功地將光和電子元件整合在一起。 為了定義出p型和n型的區域,我們採用了SOD熱擴散法。從實驗的結果顯示,此元件呈現電晶體的特性,並且從電荷耦合器的影像中,我們可以觀察到光訊號會被通道中的自由載子所吸收。在適當的偏壓之下 ,此元件之動態調變深度和靜態調變深度均可達到100%。除此之外,在調變深度高達95%以上的情況下,元件的調變頻率可以高達5k赫茲。
We have fabricated and characterized a Si-based optical waveguide modulator working at the wavelength of 1.55 μm. It consists of a joint version of JFET and p-i-n diode structures integrated with a silicon rib waveguide on epitaxial Si wafers. Besides, the optical modulation mechanism was achieved via free carrier dispersion effect. Above all, the waveguide modulator successfully integrates the functions of optical and electronic devices altogether in a silicon substrate. The spin-on-dopant (SOD) method was utilized to define the p- and n-doped regions. The results of our experiments revealed that the devices present transistor characteristics. According to CCD images, we can observe that the light is absorbed by the plasma sitting within the optical channel. The device exhibits both the static and dynamic modulation depth of ~100% at the chosen driving conditions. In addition, a modulation depth above 95% was observed for modulation frequency up to 5 kHz.
[1] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687–1706, 1993.
[2] Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973.
[3] B. R. Hemenway, O. Solgaard, and D. M. Bloom, “All-silicon integrated optical modulator for 1.3 mm fiber-optic interconnects,” Appl. Phys. Lett., vol. 55, pp. 349–350, 1989.
[4] Graham T. Reed, “The optical age of silicon,” 2004 Nature Publishing Group.
[5] Graham T. Reed, and C. E. Jason Png, “Silicon optical modulators,” Materials Today, vol. 8, Issue 1, pp. 40-50, 2005.
[6] Antonella Sciuto, Sebania Libertino, Salvo Coffa, and Giuseppe Coppola, “Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator,” J. Lightwave Technol., vol. 21, no. 1, pp. 228-235, 2003.
[7] S. Coffa and L. Tsybeskov, Eds., “Silicon-based optoelectronics,” in MRS Bull., 1998, vol. 23.
[8] Libertino S.; Coffa S.; Saggio M., “Design and fabrication of integrated Si-based optoelectronic devices,” Mat. Sci in Semiconductor Processing, Vol. 3, pp. 375-381, 2000.
[9] R. L. Espinola, M.-C. Tsai, James T. Yardley, and R. M. Osgood, Jr., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett., vol. 15 (10), pp. 1366-1368, 2003.
[10] G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett., vol. 59 (7), p. 771, 1991.
[11] R. A. Soref and B. R. Bennett, “Electro-optic effects on silicon,” IEEE J. Quantum Electron. vol. 23 (1), pp. 123-129, 1987.
[12] Sciuto, S. Libertino, S. Coffa, G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5 μm,” Appl. Phys. Lett., vol. 86 (20), pp. 201115-201115-3, 2005.
[13] Graham T. Reed and Andrew P. Knights, “Silicon Photonics An Introduction,” John Wiley & Sons, Ltd.
[14] S.O.Kasap, “Optoelectronics and Photonics Principles and Practices,” Pearson Education Internaional.
[15] http://en.wikipedia.org/wiki/Snell%27s_law.
[16] T. Tamir,” Integrated Optics,” 豪華書局有限公司.
[17] Clifford R, Pollock, “Fundamentals of optoelectronics,” RICHARD D. IRWIN, INC.
[18] Graham T. Reed and C. E. Jason Png, “Silicon optical modulator,” materialsdoday January 2005.
[19] Jia-Ching Liao, “Si-Based Optical Waveguide Modulator utilizing the Free Carrier Dispersion Effect,” Institute of Microelectronics, Department of Electrical Engineering, NCKU, Tainan, Taiwan, ROC, Thesis for Master of Science, June 2007.
[20] http://en.wikipedia.org/wiki/Pockels_Effect.
[21] http://en.wikipedia.org/wiki/Kerr_Effect.
[22] http://en.wikipedia.org/wiki/Franz-Keldysh_effect.
[23] Donald A. Neamen, “Semiconductor Physics and Device Basic Principles Third Edition,” Mc Graw Hill.
[24] S. Pogossian, L. Vescan , A. Vonsovici, “The Single Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol., vol. 16, no. 10, pp. 1851-1853, 1998.
[25] Ricky W. Chuang, Zhen-Liang Liao, Mao-Teng Hsu, Jia-Ching Liao, and Chih-Chieh Cheng, “Silicon Electro-Optic Modulator Fabricated on Silicon Substrate Utilizing the Three-Terminal Transistor Waveguide Structure”, Japanese Journal of Applied Physics Vol. 47, No. 4, 2008, pp. 2945–2949.
[26] OptiBPM, technical Background and Tutorials.
[27] A Sciuto and S Libertino, “Experimental analysis of a BMFET light intensity modulator: from static distributions to the carrier plasma dynamic and electro-optical device performance,” Semicond. Sci. Technol. 21 (2006) 890–897.
[28] Antonella Sciuto, Sebania Libertino, Salvo Coffa, and Giuseppe Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 μm,” Appl. Phys. Lett. vol. 86, 201115, 2005.