簡易檢索 / 詳目顯示

研究生: 黃建中
Huang, Chien-Chung
論文名稱: 多孔隙瀝青混凝土之特性分析
Analysis of Characteristics of Porous Asphalt Concrete
指導教授: 陳建旭
Chen, Jian -Shiuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 188
中文關鍵詞: 多孔隙瀝青混凝土硫磺消散潛應變能限度滲透係數凝聚力
外文關鍵詞: porous asphalt concrete, sulfur, dissipated creep strain energy limit, permeability, cohesion
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對國內於多孔隙瀝青混凝土的應用上,從改質瀝青性質、水侵害作用、孔隙堵塞與閉合之行為與鋪面結構層的黏結特性等方面進行探討,提供公路單位使用PAC複合式柔性鋪面與評估PAC鋪面績效之參考。
    研究結果顯示,硫磺助溶劑能明顯改善基底瀝青與SBS的相容性,有效降低改質瀝青在高溫儲存時的相分離現象,並減少改質瀝青產生網絡結構時所需要的SBS含量,此為硫磺在SBS顆粒交互作用加勁效應上的貢獻;透過Mooney黏度模式修正SBS在瀝青中的有效體積代入Nielsen模式後,能夠有效預測添加硫磺後改質瀝青之鋪面績效。在PAC水侵害方面,高黏度PAC有較高的消散潛應變能限度,較大的消散潛應變能限度代表有較佳的抵抗裂縫能力,水侵害之影響會造成混合料之消散潛應變能限度下降,而PAC抗裂縫能力的優劣依序為高黏度、改質III型與AR-80混合料;冷拌PAC隨著浸水時間增加,其試體強度也隨之下降,各種冷拌瀝青也因所含添加物不同,在強度上與受水侵害的影響都有明顯的差異,其中冷拌瀝青C及D有較佳的工程性質。
    PAC滲透性的研究結果顯示,Ko/Kc與Ko/Kr可以分別作為堵塞影響程度與排水性回復成效的判斷指標,Ko/Kc與Ko/Kr的數值愈相近且接近1.0,表示抵抗堵塞的能力較佳;AR-80、改質III型與高黏度PAC之孔隙率於輪載重壓實完成後,分別減少1.5%、1.0%與0.6%,而水平向滲透係數分別減少31.6%、33.6%與8.9%,說明使用高黏度瀝青可以維持較佳的排水性。在PAC鋪面層之黏結特性方面,沒有噴灑黏層的界面於DAC-DAC、PAC-DAC、PAC-SMA和PAC-Guss鋪面結構中都顯示有較高的凝聚力,說明鋪面表層乾淨且塗有瀝青的界面可以不使用黏層;瀝青混凝土受溫度敏感性的影響甚大,低溫時有較佳的工程性質,試驗結果亦顯示PAC-SMA之界面剪應力受溫度變化影響最小,由粒料互鎖機制可知瀝青混凝土界面之級配差異小有助於降低溫度敏感性。

    The study discussed the applications of porous asphalt concrete (PAC), including characteristics of polymer modified asphalt (PMA), moisture damage, clogging of pores, and interface bonding of pavement structure. The results may serve as reference for highway agencies in the use of PAC composite flexible pavement and the evaluation of PAC pavement.
    The results have shown that sulfur solubilizer was able to improve the compatibility between asphalt in sub-base and SBS, to effectively reduce phase separation of PMA when stored in high temperature, and to decrease the SBS needed for PMA network structure. These were the effects of sulfur during the reinforcing interaction between SBS grains. The Mooney viscosity model was used to revise the effective volume of SBS in asphalt, which was then put into the Nielsen model in order to predict the performance of sulfur-added PMA pavement. In terms of moisture damage of PAC, high-viscosity PAC had higher dissipated creep strain energy limit, which meant better ability to resist cracking. Moisture damage would lower the dissipated creep strain energy limit of the mixture. In terms of cracking-resistance, high-viscosity PAC was more cracking-resistant than Type III PMA, followed by AR-80 mixture. The longer the cold mix PAC was soaked in water, the lower the strength of the sample. With different additives, cold mix asphalts have shown significant differences in strength and moisture damage. Sample C and D showed better engineering properties.
    Permeability test of PAC showed that Ko/Kc and Ko/Kr could be used to determine the level of clogging and the efficacy of permeability. When Ko/Kc and Ko/Kr were more similar and the closer they were to 1.0, the more clogging-resistant the PAC was. After being tamped with wheel loading, porosity of AR-80, Type III PMA, and high-viscosity PAC decreased 1.5%, 1.0%, and 0.6% respectively; horizontal permeability coefficient decreased 31.6%, 33.6%, and 8.9% respectively; high-viscosity asphalt was clearly more permeable. The research of binding in PAC pavement has found that interfaces without tack coat had higher cohesion in DAC-DAC, PAC-DAC, PAC-SMA, and PAC-Guss. When the surface was clean and coated with asphalt, tack coat was dispensable. Asphalt concrete is very susceptible to temperature and has better engineering properties in lower temperature. The test results also showed that the interface shear stress of PAC-SMA was least susceptible to temperature. The interlocking mechanism of aggregate has shown that less different asphalt concrete interface gradation would help reduce temperature susceptibility.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-5 1.3 研究目的 1-7 1.4 研究範圍 1-7 1.5 研究架構與流程 1-9 第二章 文獻回顧 2-1 2.1 高分子改質瀝青 2-1 2.1.1 高分子改質瀝青之特性 2-1 2.1.2 硫磺助溶劑的應用 2-4 2.2 多孔隙瀝青混凝土 2-6 2.2.1 材料 2-9 2.2.1.1 瀝青材料 2-10 2.2.1.2 粒料 2-12 2.2.1.3 纖維 2-15 2.2.2 配比設計 2-16 2.3 冷拌瀝青混凝土 2-23 2.3.1 冷拌瀝青混凝土試體的製作方式 2-24 2.3.2 冷拌瀝青混凝土規範 2-24 2.3.3 冷拌瀝青混凝土之工程特性 2-25 2.4 水分對瀝青混凝土鋪面之影響 2-25 2.4.1 水分對瀝青混凝土侵害作用之機制 2-26 2.4.2 剝脫之因素 2-27 2.4.3 實驗室評估水侵害的方法 2-28 2.5 多孔隙瀝青混凝土鋪面之排水特性 2-30 2.5.1 滲透係數 2-30 2.5.2 堵塞對滲透係數之影響 2-33 2.6 複合式柔性鋪面層 2-36 2.6.1 黏層 2-36 2.6.2 黏層定義 2-37 2.6.3 黏層材料 2-38 2.6.4 黏層施工 2-41 2.6.5 柔性鋪面層之溫度分佈 2-42 2.6.6 黏層之相關研究 2-43 第三章 研究計畫 3-1 3.1 試驗材料 3-1 3.1.1 高分子改質劑與硫磺助溶劑 3-1 3.1.2 瀝青黏結料與黏層材料 3-2 3.1.3 粒料級配與瀝青用量 3-5 3.1.4 堵塞材料 3-6 3.2 試驗方法與設備 3-7 3.2.1 瀝青黏結料試驗 3-7 3.2.1.1 黏度試驗 3-7 3.2.1.2 彈性回復率試驗 3-8 3.2.1.3 離析試驗 3-8 3.2.1.4 動剪流變試驗 3-8 3.2.2 微觀型態觀察 3-10 3.2.3 瀝青混凝土試驗 3-11 3.2.3.1 間接張力試驗 3-11 3.2.3.2 浸水剝脫試驗 3-12 3.2.3.3 回彈模數試驗 3-12 3.2.3.4 潛變試驗 3-13 3.2.3.5 輪跡試驗 3-15 3.2.3.6 實驗室透水試驗 3-16 3.2.3.7 實驗室試體堵塞程序 3-18 3.2.3.8 直接剪力試驗 3-18 3.2.4 現地透水量試驗 3-19 3.3 分析方法 3-21 3.3.1 消散潛應變能限度 3-21 3.3.2 Goodman界面分析模式 3-22 3.3.3 Mohr-Coulomb破壞準則 3-22 3.3.4 鋪面平均紋理深度 3-22 3.3.5 平均瀝青薄膜厚度 3-23 第四章 SBS改質瀝青添加硫磺之基本性質 4-1 4.1 SBS改質瀝青添加硫磺之物理特性 4-1 4.2 SBS改質瀝青添加硫磺之流變行為 4-5 4.3 微觀型態觀察 4-10 第五章 多孔隙瀝青混凝土之工程性質 5-1 5.1 熱拌多孔隙瀝青混凝土 5-1 5.1.1 水侵害對熱拌瀝青混凝土之影響 5-2 5.2 冷拌多孔隙瀝青混凝土 5-8 5.2.1 水侵害對冷拌瀝青混凝土之影響 5-9 第六章 多孔隙瀝青混凝土之滲透性分析 6-1 6.1 滲透係數 6-1 6.1.1 滲透係數分析方法之比較 6-1 6.1.2 影響滲透係數之因子 6-2 6.1.3 滲透係數之預測模式 6-5 6.2 堵塞行為對PAC滲透係數之影響 6-8 6.2.1 孔隙堵塞 6-8 6.2.2 孔隙閉合 6-13 6.3 現地PAC鋪面排水成效之探討 6-17 6.3.1 國道1號案例分析 6-17 6.3.2 國道6號案例分析 6-18 6.3.2.1 透水量試驗結果 6-19 6.3.2.2 車轍量試驗結果 6-23 第七章 複合式柔性鋪面層之黏結特性 7-1 7.1 界面參數之分析 7-1 7.2 界面類型之影響 7-3 7.3 黏層類型之影響 7-8 7.4 黏層養護時間之影響 7-10 7.5 溫度變化之影響 7-12 第八章 結論與建議 8-1 8.1 結論 8-1 8.1.1 改質瀝青添加硫磺助溶劑 8-1 8.1.2 多孔隙瀝青混凝土之工程性質 8-1 8.1.3 多孔隙瀝青混凝土之滲透性 8-2 8.1.4 柔性鋪面層之黏結特性 8-3 8.2 建議 8-5 參考文獻 參-1 自述 簡-1

    大川秀雄、佐藤隆宏、帆莉浩三,「排水性鋪面的滲透係數相關之研究」,土木學會論文集,第21卷,178號,第101-108頁,日本(1993)。

    中華鋪面工程學會,英漢鋪面名詞彙編(第一版),台南(2004)。

    公路工程施工規範,冷拌瀝青混凝土,交通部,台北(2004)。

    行政院公共工程委員會,公共工程施工綱要規範,台北(2004)。

    沈得縣、蘇南、杜嘉崇、蔡明達、郭銘峰、陳金獅,「道路鋪面黏層、透層及封層材料規範草案之研究」,交通部科技顧問室研究報告,台北(2003)。

    林志棟,「高速公路排水路面試鋪工程成效評估研究」,交通部高速公路局,台北(2006)。

    帆莉浩三、丸山暉彥、大川秀雄、小山清,「排水性鋪面的孔隙結構相關之研究」,土木學會論文集,第22卷,484號,第69-76頁,日本(1994)。

    社團法人日本道路協會,簡易鋪裝綱要,社團法人日本道路協會出版,第22-41頁(1973)。

    夏明勝,「分析瀝青混凝土之材料及疲勞特性」,國立成功大學土木研究所博士論文,台南(2005)。

    黃博仁,「排水瀝青混合料鋪面試驗路段之成效評估」,國立中央大學土木研究所碩士論文,中壢(2001)。

    蔡攀鰲,瀝青混凝土,三民書局,台北(1990)。

    廖敏志,「SBS改質瀝青質流性質對瀝青鋪面績效之影響」,碩士論文,國立成功大學土木研究所,台南(2000)。

    盧俊愷、蔡攀鰲、彭俊翔、陳國琛,「南台灣柔性鋪面溫度分佈探討-以高速公路新市收費站為例」,中國土木水利工程學刊,第23卷,第3期,第39-50頁(1996)。

    Adedeji, A., Grunfelder, T., Bates, F.S., Macosko, C.W., Stroup-Gardiner, M. and Newcomb, D.E., “Asphalt Modified by SBS Triblock Copolymer: Structures and Properties,” Polymer Engineering and Science, Vol. 36, pp. 1707-1723 (1996).

    Al-Dubabe, I.A., Al-Abdul Wahhab, H.I., Asi, I.M. and Ali, M.F., “Polymer Modification of Arab Asphalt,” Journal of Materials in Civil Engineering, pp. 161-167 (1998).

    Aklonis, J.J. and MacKnight, W.J., Introduction to Polymer Viscoelastic, John Wiley & Sons, Inc., New York (1983).

    Anderson, D.A., Christensen, D.W. and Bahia, H.U., “Physical Properties of Asphalt Cement and the Development of Performance Related Specification,” Journal of the Association of Asphalt Paving Technologists, Vol. 60, pp. 437-532 (1991).

    Asphalt Institute. Asphalt Cold Mix, 3nd edition, U.S. pp.144-161(1990).

    Asphalt Institute Performance Graded Asphalt Binder Specification and Test, Asphalt Institute Superpave Series No.1 (SP-1) (1994).

    Bahia, H.U., Hislop, W.P. and Zhai, H., “Classification of Asphalt Binder into Simple and Complex Binders,” Journal of the Association of Asphalt Paving Technologists, Vol. 67, pp. 1-41(1998).

    Bear, J., Dynamics of Fluids in Porous Media, American Elsevier, New York (1972).

    Bellomy, R.C. and McGinnis, E.L., “Bitumen Compositions Containing Bitumen, Polymer and Sulfur,” US Patent 5371121 (1994).

    Bendtsen, H. and Raaberg, J., “Clogging of Porous Pavement,” Danish Road Institute Technical Note 55, Nr.55, No.7, pp.1-27(2007).

    Bigg, D.M., “Mechanical Properties of Particulate Filled Polymers,” Polymer Composites, Vol. 8, pp. 115-121 (1987).

    Blanco, R., Rodriguez, R., Garcia-Garduno, M., and Castano, V.M., “Morphology and Tensile Properties of Styrene-Butadiene Copolymer Reinforces Asphalt,” Journal of Applied Polymer Science, Vol. 56, pp. 57-64 (1995).

    Blanco, R., Rodriguez, R., Garcia-Garduno, M. and Castano, V.M., “Rheological Properties of Styrene-Butadiene Copolymer-Reinforced Asphalt,” Journal of Applied Polymer Science, Vol. 61, pp. 1493-1501 (1996).

    Brown, E.R., Haddock, J.E., Mallick, R.B. and Bukowski, J., “Performance of Stone Matrix Asphalt (SMA) Mixtures in the United States,” Journal of the Association of Asphalt Paving Technologists, Vol. 66, pp. 426-457 (1997).

    Brown, E.R. and Haddock, J.E., “A Method to Ensure Stone-on-stone Contact in Stone Matrix Asphalt Paving Mixtures,” NCAT Report No. 97-2 (1997).

    Brule, B., “Polymer-Modified Asphalt Contents Used in the Road Construction Industry: Basic Principles,” Transportation Research Record 1535, pp. 48-53 (1996).

    Canestrari, F., and Santagata, E., “Temperature Effects on the Shear Behaviour of Tack Coat Emulsions Used in Flexible Pavement,” The International Journal of Pavement Engineering, Vol. 6, pp.39-46(2005).

    Carreau, P.J., Bousmina, M. and Bonniot, F., “The Viscoelastic Properties of Polymer-Modified Asphalts,” Canadian Journal of Chemical Engineering, Vol. 78, pp. 495-503 (2000).

    Charbeneau, R.J., Klenzendorf, J.B. and Barrett, M.E., " Methodology for Determining Laboratory and In-Situ Hydraulic Conductivity of Asphalt Permeable Friction Course," Journal of Hydraulic Engineering, (accepted for publication) (2010).

    Chen, J.S., Liao, M.C. and Shiah, M.S., "Asphalt Modified by Styrene-Butadiene-Styrene Triblock Copolymer: Morphology and Model," Journal of Materials in Civil Engineering, ASCE, Vol.14, pp.224-229 (2002).

    Chen, J.S., Liao, M.C. and Lin, C.H., “Determination of Polymer Content in Modified Bitumen,” Materials and Structures/Materiaux et Constructions, Vol. 36, pp. 594-598 (2003).

    Chen, J.S., Lin, K.Y., and Young. S.Y., "Effects of Crack Width and Permeability on Moisture-Induced Damage of Pavements," Journal of Materials in Civil Engineering, ASCE, Vol.16, pp.276-282 (2004).

    Chen, X., and Huang, B., “Evaluation of Moisture Damage in Hot Mix Asphalt Using Simple Performance and Superpave Indirect Tensile Tests,” Construction and Buliding Materials, Vol.22, pp.1950-1962(2008).

    Choquet, F.S. and Ista, E.J., “The Determination of SBS, EVA and APP Polymers in Modified Bitumen,” Polymer Modified Asphalt Binders, ASTM STP 1108, Philadelphia, pp.35-49 (1992).

    Collins, J.H., Bouldin, M.G., Gelles, R. and Berker, A., “Improved Performance of Paving Asphalt by Polymer Modification,” Journal of the Association of Asphalt Paving Technologists, Vol. 60, pp. 43-79 (1991).

    Coplantz, J.S. and D.E. Newcomb, “Water Sensitivity Test Methods for Asphalt Concrete Mixtures: A Laboratory Comparison,” Transportation Research Record: Journal of Transportation Research Board, No.1171, Washington, D.C., pp. 44-50 (1988).

    Deme, I., “Shell Sulfur Asphalt Products and Process,” Proceedings of International Road Federation Symposium on Sulfur Asphalt and Road Construction, Bordenaux, France, pp. 78-86 (1981).

    Elvik, R., and Greibe, P., “Road Safety Effects of Porous Asphalt : A Systematic Review of Evaluation Studies, ” Accident Analysis and Prevention, Vol.37, pp.515-522 (2005).

    Fried, J.R., Polymer Science and Technology, Prentice Hall, New Jersey (1995).

    Field, R., Masters, H. and Singer, M., “Porous Pavement: Research, Development, and demonstration,” Journal of Transportation Engineering, Vol.108, pp.244-258 (1982).

    Fwa, T.F., Tan, S.A. and Guwe, Y.K., “Laboratory Evaluation of Clogging Potential ofPorous Asphalt Mixtures,” Transportation Research Record 1681, pp.43-49 (1999).

    Gahvari, F., “Effects of Thermoplastic Block Copolymers on Rheology of Asphalt,” Journal of Materials in Civil Engineering, Vol. 9, pp. 111-116 (1997).

    Gilbert, D.G., Ashby, M.F. and Beaumont, P.W.R., “Modulus-Maps for Amorphous Polymers,” Journal of Materials Science, Vol. 21, pp. 3194-3210 (1986).

    Goodrich, J.L., “Asphalt and Polymer Modified Asphalt Properties Related to the Performance of Asphalt Concrete Mixes,” Journal of the Association of Asphalt Paving Technologists, Vol. 57, pp. 116-175 (1988).

    Hassam, H. F., AI-Oraimi, S. and Taha, R., “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol. 17, pp. 416-422 (2005).

    Hesp, S.A. and Woodhams, R.T., “Stabilization Mechanisms in Polyolefin-Asphalt Emulsions,” Polymer Modified Asphalt Binders, ASTM STP 1108, Philadelphia, pp. 1-19 (1992).

    Hernandez, G., Rodriguez, R., Blanco, R. and Castano, V.M., “Mechanical Properties of the Composite Asphalt-Styrene-Butadiene Copolymer at High Degree of Modification,” International Journal of Polymeric Materials, Vol. 35, pp. 129-144 (1997).

    Hicks, R.G., “Moisture Damage in Asphalt Concrete”, National Cooperative Highway Research Program Synthesis of Highway Practice 175 (1991).

    Isacsson, U. and Lu, X., “Laboratory Investigation of Polymer Modified Bitumens,” Journal of the Association of Asphalt Paving Technologists, Vol. 68, pp. 35-63 (1999).

    Jianying, Y., Peiliang, C., and Shaopeng, W., and Songbo, C., “Curing Behavior of Epoxy Asphalt,” Journal of Wuhan University of Technology-Mater, Vol.24 No.3, pp. 462-465(2008).

    Jin, H., Gao, G., Zhang, Y., Zhang, Y., Sun, K. and Fan, Y., “Improved Properties of Polystyrene-Modified Asphalt through Dynamic Vulcanization,” Polymer Testing, Vol. 21, pp. 633-640 (2002).

    Jones, R.H. and Jones H.A., “Granular Drainage Layers in Pavement Foundations,” International Symposium on Unbound Aggregates in Roads, 3rd, University of Nottingham, pp.55-69 (1989).

    Jostein, M., and Roar, T., “Compaction and Properties of Cold Mixes, “2nd Eurasphalt & Eurobitume Congress Barcelona 2000, pp. 417-424 (2000).

    Khattak, M.J. and Baladi, G.Y., “Engineering Properties of Polymer Modified Asphalt Mixture,” Transportation Research Record 1638, pp. 12-21 (1998).

    King, G.N., King, H.W., Harders, O., Arand, W., Chaverot, P. and Planche, J.P., “Influence of Asphalt Graded and Polymer Concentration on the High Temperature Performance of Polymer Modified Asphalt,” Journal of the Association of Asphalt Paving Technologists, Vol. 61, pp. 29-61 (1992).

    Kraemer, C., “Porous Asphalt Surfacing in Spain,” Proceedings of International Sympsoium on Highway Surfacing, University of Ulster., (1990).

    Kragh, J., “Traffic Noise at Two-Layer Porous Asphalt,” Danish Road Institute Technical Note 30 (2005).

    Kraus, G., “Modification of Asphalt by Block Polymers of Butadiene and Styrene,” Rubber Chemistry and Technology, Vol. 55, pp. 1389-1402 (1982).

    Kruntcheva, M. R., Collop,A. C., and Thom, N. H., “Properties of Asphalt Concrete Layer Interfaces,” Journal of Materials in Civil Engineering, ASCE, Vol. 18, pp.467-471(2006).

    Lesueru, D., Gerard, J.F., Claudy, P., Letoffe, J.M., Martin, D. and Planche, J.P., “Polymer Modified Asphalts as Viscoelastic Emulsions,” Journal of Rheology, Vol. 42, pp.1059-1074 (1998).

    Little, D.N., Button, J.W., White, R.M., Ensley, E.K., Kim, Y. and Ahmed, S.J., “Investigation of Asphalt Additive,” FHWA/RD-87-001, Washington, D.C. (1982).

    Lottman, R.P., “Laboratory Test Method for Predicting Moisture Induced Damage to Asphalt Concrete,” Transportation Research Record: Journal of Transportation Research Board, No.843, Washington, D.C., pp.88-95 (1982).

    Lottman, R.P., L.J. White and D.J. Frith, “Methods of Predicting and Controlling Moisture Damage in Asphalt Concrete,” Transportation Research Record: Journal of Transportation Research Board, No.1171, Washington, D.C., pp.1-11 (1988).

    Lu, X., Isacsson, U. and Ekblad, J., “Phase Separation of SBS Polymer Modified Bitumens,” Journal of Materials in Civil Engineering, Vol. 11, pp. 51-57 (1999).

    Maldonado, P., Mas, J. and Phung, T.K., “Process for Preparing Polymer–Bitumen Compositions,” US Patent 4145322 (1979).

    Mallick, R. B., Kandhal, P. S., Cooley, L. A., and Watson, D. E., “Design, Construction and Performance of New Generation Open-Graded Friction Course,” Journal of the Association of Asphalt Paving Technologist, Vol.69, pp.391-423(2000).

    Marasteanu M.O. and Clyne, T.R., “Evaluation of Pothole Patching Materials,” Journal of Materials in Civil Engineering, Vol. 18, (2006).

    Mckay, K.W., Gross, W.A. and Diehl, C.F., “The Influence of Styrene-Butadiene Diblock Copolymer and Styrene-Butadiene-Styrene Triblock Copolymer Properties and Product Performance,” Journal of Applied Polymer Science, Vol. 56, pp. 947-958 (1995).

    McQuillen, J.L., Takallou, H.B., Hicks, R.G. and Esch, D., “Economic-Analysis of Rubber-Modified Asphalt Mixes,” Journal of Transportation Engineering, ASCE, Vol. 114, pp. 259-277 (1988).

    Miller, C., Ford, Jr., Phillip, G.M., and Charles, E.O., ”Quantitative Evaluation of Strpping by the Surface Reaction Test,” Transportation Research Record: Journal of Transportation Research Board, No.515, Washington, D.C., pp.40-54(1973).

    Mohammad, L.N., Raqib, M.A. and Huang, B., “Influence of Asphalt Tack Coat Materials on Interface Shear Strength,” Transportation Research Record 1789, pp.56-65 (2002).

    Molenaar, A.A.A., Meerkerk, A.J.J., Miradi, M. and van der Steen, T., “Performance of Porous Asphalt Concrete,” Journal of the Association of Asphalt Paving Technologists, Vol. 75, pp.1053-1094 (2006).

    Moore, L.M., Hicks, R.G., and Rogge, D.F., “Design, Construction, and Maintenance Guidelines for Porous Asphalt Pavements,” Design and Rehabilitation of Pavements, Transportation Research Record 1778, pp.91-99 (2001).

    Moran, L.E., “Method for Improving the Storage Stability of Polymer Modified Asphalt,” US Patent 5070123 (1991).

    Mrawira, D. and Damude, D.J., “Revisiting the Effectiveness of Tack Coats in HMA Overlays: The Shear Strength of in Young Overlays,” Proceedings of 14th Annual Conference, Canadian Technical Asphalt Association Proceedings, pp.116-129 (1999).

    Munyagi, A.A., “Evaluation of Cold Asphalt Patching Mixes,” Masters In Engineering University of Stellenbosch, (2006).

    Nakanishi, H., Takei, S., and Goto, K., “Suggestion to the Improvement in Durability of the Function of Porous Asphalt Pavements,” Road Construction, Japan (1995).

    Nielsen, L.E., Mechanical Properties of Polymer and Composite, Marcel Deker, Inc., New York (1994).

    Parker, F., and Wilson, M.S., “Evaluation of Boiling and Stress Pedestal Tests for Assessing Stripping Potential of Alabama Asphalt Concrete Mixtures,” Transportation Research Record: Journal of Transportation Research Board, No.1096, Washington, D.C., pp.90-99(1986).

    Paul, H.R., and Scherocman, J. A., “Friction Testing of Tack Coat Surfaces,” Transportation Research Record 1616, pp.6-12 (1998).

    Read, J. and Whiteoak, D., The Shell Bitumen Handbook, 5th edition, London (2004).

    Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., and Kennedy, T. W., Hot Mix Asphalt Materials, Mixture Design, and Construction, NAPA Education Foundation Lanham, Maryland, pp.501-502 (1996).

    Rosen, S.L., Fundamental Principles of Polymeric Materials, John Wiley & Sons, Inc., New York (1993).

    Romanoschi, S. A., and Metcalf, J. B., “Characterization of Asphalt Concrete Layer Interfaces,” Transportation Research Record 1778, pp.132-139(2001).

    Ronald, L. and AI-Swailmi, T.S., “Water Sensitivity of Asphalt-Aggregate Mixes: Test Selection,” SHRP-A-403, (1994).

    Santagata, F.A., G. Ferrotti, M.N. Partl, and F. Canestrari., “Statistical Investigation of Two Different Interlayer Shear Test Method,” Materials and Structures, Vol. 42, pp.705-714(2009).

    Santagata, F.A., M.N. Partl, G. Ferrotti, F. Canestrari, and A. Flisch., “Layer Characteristics Affecting Interlayer Shear Resistance in Flexible Pavements,” Journal of Association of Asphalt Paving Technologists, Vol. 77, pp.221-256(2008).

    Scherocman, J.A., Mesch, K.A. and Proctor, J.J., “The Effect of Multiple Freeze-Thaw Cycle Conditioning on the Moisture Damage in Asphalt Concrete Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol.55, pp.213-236(1983).

    Serfass, J.P., Poirier, J.E., Henrat, J.P. and Carbonneau, X., “Influence of Curing on Cold Mix Mechanical Performance” Materials and Structures, Vol.37, pp.365-368(2004).

    Shahin, M. Y., Pavement Management for Airports and Parking Lots, Champman & Hall, New York (1994).

    Shashidhar, N. and Romero, P., “Factors Affecting the Stiffening Potential of Mineral Fillers,” Transportation Research Record 1638, pp. 94-100 (1998).

    Shashidhar, N., Needham, S.P. Chollar, B.H. and Romero, P., “Prediction of the Performance of Mineral fillers in Stone Matrix Asphalt,” Journal of the Association of Asphalt Paving Technologists, Vol. 68, pp. 222-251 (1999).

    Sholar, G. A., Page, G. C., Musselman, J. A., Upshaw, P. B., and Moseley, H. L., “Preliminary Investigation of a Test Method to Evaluate Bond Strength of Bituminous Tack Coats,” Journal of the Association of Asphalt Paving Technologists, Vol. 73, pp.771-806 (2004).

    Shuler, T.S., Collins, J.H. and Kirkpartick, J.P., “Asphalt Rheology: Relationship to Mixture,” ASTM Special Technical Publication 941, pp. 82-95 (1985).

    Shuler, T.S., Collins, J.H. and Kirkpatrick, J.P., “Polymer-Modified Asphalt Properties Related To Asphalt Concrete Performance,” ASTM Special Technical Publication, pp. 179-193 (1987).

    Suresha, S. N., Varghese, G., and Ravi, A. U., “Characterization of Porous Friction Course Mixes for Different Marshall Compaction Efforts,” Construction and Building Materials 23, pp.2887-2893 (2009).

    Swanlund, M.E., “Quiet Pavement Scan and Implementation Activities,” Journal of the Association of Asphalt Paving Technologists, Vol. 74, pp.1043-1058 (2005).

    Tan, S.A., Fwa, T.F. and Chuai, K.C., “A New Apparatus for Measuring the Drainage Properties of Porous Asphalt Concrete,” Journal of Testing and Evaluation, Vol.25, pp.370-377 (1997).

    Tan, S.A., Fwa, T.F. and Chaui, K.C., “Drainage Consideration For Porous Asphalt Surface Course Design,” Transportation Research Board 2004 Annual Meeting, Washington, D.C. (CD-ROM) (2004).

    Tan, S.A., Fwa, T.F. and Han, C.T., “Clogging Evaluation of Permeable Bases,” Journal of Transportation Engineering, Vol.129, pp.309-315 (2003).

    Thanaya, N.A., Zoorob, S.E., and Forth, J.P., “A Laboratory Study on Cold-Mix, Cold-Lay Emulsion Mixtures,” Institution of Civil Engineers ,162 Issue, pp.47-55 (2009).

    Vivar, E., and Haddock, J.E., “Hot-Mix Asphalt Permeability and Porosity,” Journal of the Association of Asphalt Paving Technologists, Vol. 76, pp.953-980 (2007).

    Welborn, J.T. and Babashak, J.F., “Bitumen Mixing with Sulfur,” Journal of Highway Division, Proceeding of American Society of Civil Engineering, pp. 34-40 (1958).

    Wen, H., and Bahia, H., “Characterizing Fatigue of Asphalt Binders Using Viscoelastic Continuum Damage Mechanics,” Transportation Research Board Annual Meeting, Washington, D.C. (on CD-ROM) (2009).

    Wen, G., Zhang, Y., Zhang, Y., Sun, K. and Chen, Z., “Vulcanization Characteristics of Asphalt/SBS Blends in the Presence of Sulfur,” Journal of Applied Polymer Science, Vol. 82, pp. 989-996 (2001).

    Wen, G., Zhang, Y., Zhang, Y., Sun, K. and Fan, Y., “Rheological Characterization of Storage-Stable SBS-Modified Asphalts,” Polymer Testing, Vol. 21, pp. 295-302 (2002).

    William, G.E. and Baton, L.R., “Compatible Asphalt-Polymer Blends,” US Patent 5670652 (1997).

    Wu, F.C., and Huang, H.T., ”Hydraulic Resistance Induced by Deposition of Sediment in Porous Medium.” Journal of Hydraulic Engineering, Vol.126, n 7, pp.547-551 (2000).

    Yoon, H. H. and Tarrer, A. R., “Effect of Aggregate Properties on Stripping,” Transportation Research Record: Journal of Transportation Research Board, No.1171, Washington, D.C., pp.37-43 (1988).

    Uzan, J., M. Livneh, and Y. Eshed., “Investigation of Adhesion Properties Between Asphalt Concrete Layers,” Proceedings of the Association of Asphalt Paving Technologists, Vol. 47, pp.495-521 (1978).

    下載圖示 校內:2013-10-28公開
    校外:2013-10-28公開
    QR CODE