簡易檢索 / 詳目顯示

研究生: 鄭淑君
Cheng, Shu-Chun
論文名稱: 銀奈米立方體自組裝於銀金屬薄膜上形成之電漿子共振腔應用於表面增強拉曼散射光譜
Plasmonic cavities via silver nanocubes self-assembled on massed silver surface for surface enhanced Raman scattering
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 128
中文關鍵詞: 電漿子共振腔奈米立方體--絕緣層--金屬結構自組裝單分子層表面增強拉曼散射
外文關鍵詞: plasmonic cavities (PC), Nanocube-insulator-metal (NcIM), Self-assembling monolayer (SAM), Surface enhanced Raman scattering (SERS)
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主要探討電漿子共振腔的電磁場行為和其相應的表面增強拉曼光譜。各式可調變性質的高效能電漿子共振腔是利用1,2-乙二硫醇(1,2-ethanedithiol)以超近距離將銀奈米立方體及銀奈米球大面積均勻的固定在銀金屬薄膜上所形成。透過有限時域差分法發現奈米粒子與金屬薄膜間的表面電漿共振的頻率及電磁場強度受到奈米粒子形狀、粒子與金屬薄膜間的距離、組裝方式…….等因素的影響。由於銀奈米立方體具有電磁場可以特別集中的銳利角落與平行表面帶來的大面積奈米間隙,在電漿子強烈耦合現象下具有比銀奈米球較大的電磁場增強。根據模擬出的的吸收光譜,銀奈米立方體-絕緣層-金屬結構的表面電漿共振的最大吸收波長隨著絕緣層的厚度減小而紅移,且伴隨著電磁場強度的增加。當銀奈米立方體以2 nm的距離固定在銀金屬薄膜上時,其表面電漿共振的頻率與常用的633 nm雷射光頻率接近,可以引發基板周圍的強烈電磁場,計算所得的Raman增顯因子約在109倍左右。
    利用自組裝單分子層技術所製成高增顯效果的拉曼基板,其增顯因子約在3 × 108倍,與模擬結果相近。除此之外,基板具有極高的可信度及均勻性。在1 cm × 2 cm 的基板上任取20 個測量點進行10-9 M rhodamine 6G (R6G)溶液的測量,所得測量值的相對標準偏差是6.6 %,在10-9 ~ 10-6 M R6G的定量分析實驗中,待測物濃度與訊號值的相關係數是0.9997,顯見此基板十分適用於低濃度R6G的定性及定量分析。進一步將此基板用於Adenine 的定性及定量分析中,任取20 個測量點所得測量值的相對標準偏差是5.2 %,在線性區間的相關係數是0.9956,顯見基板具有良好的增顯性及均勻度,十分適用於生化分子的定量分析。

    This study investigates the electromagnetic(EM) field behaviors on the plasmonic cavities (PC) formation and the corresponding SERS responses. Various PC on a large scale from massive nanogaps are formed by self-assembling silver nanocubes or nanospheres atop the massed silver surface via 1, 2-ethanedithiol monolayer as an ultrathin spacer. The simulation results by finite-difference time-domain method demonstrate that the EM field strength and frequency of plasmon resonance are strongly affected by the shape of nanoparticles, the gap width between Ag nanocubes and the massed Ag surface, and the configuration of substrates. The stronger PCs are induced from nanocubes than nanospheres owing to the strong plasmonic interaction between the parallel silver surfaces of Ag nanocubes and the massed Ag surface. Besides, the electromagnetic field is especially concentrated at the sharp corners. A red-shift in wavelength of surface plasmon resonance increases with the decrease in gap width. Nanocube-insulator-metal geometry with 2 nm gap width (2-NcIM) possesses the strongest EM field distribution and its PC forms near 633 nm radiation, being magnificently useful for surface enhancement Raman scattering (SERS) application. The enhancement factor (EF) calculated by integrating the ratio of EM field intensity of substrate to background to the power of four, is 1.16×109.
    The homogeneous distribution of Ag nanocubes on 2-NcIM via self-assembled monolayer of 1, 2-ethanedithiol renders supreme performance in SERS analysis with enhancement factor 2.8×108 by detecting 10-9 M rhodamine 6G solution, confirming the validity of the simulation results. Otherwise, high reliability and high precision is shown via 6.6% relative standard deviation from 20-sites measurements and calibration line with 99.9%correlation coefficient from 10-6 M to 10-9 M R6G solution. It also successes in quantitative analysis by detecting 10-6 M to 10-8 M adenine solution with high reliability (5.2 % standard deviation). These result pumps us to believe that the 2-NcIM substrate is suitable used for ultra-sensitive detection for trace biochemicals in extremely low concentration.

    第一章 緒論.…………………………………………………………………1 1-1 表面增強拉曼散射…………………………………………………3 1-1-1 拉曼光譜原理..………………………………………………3 1-1-2 表面增強拉曼散射理論..……………………………………8 1-2 表面增強拉曼散射的發展與應用………………………………10 1-2-1 低濃度生化分子的檢測……………………………………10 1-2-2 奈米材料於表面增強拉曼散射的應用……………………11 1-3 研究動機…………………………………………………………12 第二章 銀奈米粒子/絕緣層/金屬系統的電漿共振.………………………21 2-1 拉曼散射光強度與電磁場強度…………………………………22 2-2 電磁波激發金屬表面電漿的電場效應探討……………………22 2-2-1 金屬的體積電漿. .…………………………………………24 2-2-2 介電物質與金屬表面 (IM)之表面電漿共振..……………25 2-2-3 金屬粒子之侷域性表面電漿共振 ......……………………28 2-2-4 金屬奈米粒子的組合之侷域性表面電漿共振……………30 2-3 有限時域差分法 (Finite Difference Method).......………………32 2-3-1 Yee網格與旋度方程式之離散化 ...………………………32 2-3-2 FDTD 穩定性 .……………………………………………35 2-3-3 FDTD邊界條件...…………………………………………35 第三章FDTD模擬結果.......………………………………………………41 3-1 奈米粒子的侷域性表面電漿共振.…….…….……….…………41 3-1-1 奈米立方體的吸收頻譜圖..………………………………42 3-1-2 奈米立方體的電場能量密度圖..…………………………42 3-2 奈米粒子雙聚體的侷域性表面電漿共振………………………43 3-2-1 奈米粒子雙聚體的吸收頻譜圖..…………………………44 3-2-2 奈米粒子雙聚體的電場能量密度圖..……………………44 3-3 奈米粒子∕介電物質∕金屬系統 (NpIM)的表面電漿共振…46 3-3-1 NpIM的吸收頻譜圖...……………………………………47 3-3-2 NpIM的電場能量密度圖...………………………………48 3-4 NpOM與 NpIM的異同.…………………………………………49 3-4-1 NpOM與NpIM吸收頻譜圖的異同...….…………………49 3-4-2 NpOM與NpIM電場能量密度圖的異同...………………50 3-5 絕緣層厚度對NcIM之的影響.…………………………………51 3-4-1 不同絕緣層厚度的NcIM吸收頻譜圖...…………………51 3-4-2 不同絕緣層厚度的NcIM之電場能量密度圖...…………52 3-6結論…………………………………………………………………53 第四章 SERS基板的製備與性質分析....…………………………………67 4-1 銀奈立方體的製備與性質分析..…………………………………67 4-1-1 銀奈米立方體的製備………………………………………68 4-1-2 TEM及SEM表面形貌分析………………………………70 4-2 SERS基板製備與性質分析………………………………………72 4-2-1 基板製備……………………………………………………72 4-2-2 SEM表面形貌分析………………………………………75 4-2-3 XPS元素分析………………………………………………75 4-2-4 UV表面電漿子共振波長分析……………………………76 4-2-5 AFM表面形貌分析………………………………………78 4-3結論…………………………………………………………………78 第五章 銀奈米粒子/絕緣層/金屬系統應用於表面增強拉曼散射………91 5-1 R6G的拉曼光譜定性分析………………………………………91 5-1-1 儀器與測量方法……………………………………………91 5-1-2 R6G的拉曼圖譜…………………………………………92 5-1-3 R6G 溶液於不同基板上的數據品質分析………………93 5-2 R6G於銀奈米立方體-絕緣層-金屬系統的定量分析…………96 5-2-1 乾式測量法的定量分析…………………………………97 5-2-2 濕式測量法的定量分析…………………………………97 5-3 Adenine的拉曼光譜分析…………………………………………98 5-3-1 Adenine 於NpIM系統的定性分析……………………99 5-3-2 Adenine 於NpIM系統的定量分析……………………99 5-4 結論………………………………………………………………100 第六章 總結與未來展望………………………………………………112 6-1 總結………………………………………………………………112 6-2 未來工作…………………………………………………………112 參考文獻…………………………………………………………………113 期刊論文…………………………………………………………………122 研討會論文………………………………………………………………122 簡歷………………………………………………………………………123

    [1] R. M. Silverstein, G. C. Bassler, Spectrometric identification of organic compounds, J. Chem. Educ.,39 (11), 546, (1962)
    [2] R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, Spectrometric Identification of Organic Compounds, 8th Ed, John Wiley& Sons: New York,, ISBN : 978-0-470-61637-6, (2014).
    [3] J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentatio, Applications, and Strategies for Data Interpretation, 4th Ed. John Wiley& Sons: New York,. ISBN 978-0-470-51634-8, (2007).
    [4] Douglas A Skoog, F. A. Hooler, S. R. Crouch, Principles of instrumental analysis. Australia: Thomson Brooks/Cole. ISBN 0-495-01201-7. (2007).
    [5] R. Herrmann, C. Onkelinx. Quantities and units in clinical chemistry: Nebulizer and flame properties in flame emission and absorption spectrometry. Pure and Applied Chemistry 58 (12): 1737–1742,(1986).
    [6] P. C. Lauterbur, Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature. 242 (5394), 190-191, (1973).
    [7] W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, C. Djerassi, Structure and the Optical Rotatory Dispersion of Saturated Ketones. J. Am. Chem. Soc. , 83 (19), 4013–4018, (1961).
    [8] C. L. Haynes, A. D. McFarland, R. P. Van Duyne, Surface-Enhanced Raman Spectroscopy, Anal. Chem.,77, 338A-346A, (2005).
    [9] R. L. McCreery, Raman Spectroscopy for chemical analysis, John Wiley& Sons, New York, (2000).
    [10] C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature, 121 (3048), 501-502, (1928).
    [11] M. Fleischmann, P. J. Hendra, A. J. McQuillan, Raman-spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett, 26 (2), 163-166, (1974).
    [12] D. F. Willemse-Erix, M. J. Scholtes-Timmerman, J. W. Jachtenberg, W. B. van Leeuwen, D. Horst-Kreft, T. C. B. Schut, R. H. Deurenberg, G. J. Puppels, A. van Belkum, M. C. Vos, K. Maquelin., Optical Fingerprinting in Bacterial Epidemiology Raman, Spectroscopy as a Real-Time Typing Method. Journal of clinical microbiology, 652–659, (2009).
    [13] M. Krause, Localizing and Identifying Living Bacteria in an Abiotic Environment by a Combination of Raman and Fluorescence Microscopy. Anal. Chem. 80, 8568–8575, (2008).
    [14] G. L. Liu, P. Lee,Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics, Applied Physics Letters, 87, 074101, (2005).
    [15] J. A. Huang, Y. L. Zhang, H. Ding, H. B. Sun, SERS-Enabled Lab-on-a-Chip Systems, Advanced Optical Materials, 3, (5), 618–633, (2015).
    [16] D. L. Jeanmaire, R. P. Van Duyne, Surface raman spectro-electro-chemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., 84 (1), 1-20, (1977).
    [17] M.G. Albrech, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode.J. Am. Chem. Soc. 99 (15), 5215-5217, (1977).
    [18] E. C. Le Ru, P. G. Etchegoin, Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy, Chem. Phys. Lett., 423, 63-66, (2006).
    [19] M. Kerker, D.-S. Wang, H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles, Appl. Opt. 19, 3373-3388, (1980).
    [20] D.-S. Wang, M. Kerker, Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids, Phys. Rev. B, 24, 1777-1790, (1981).
    [21] H. Xu, J. Aizpurua, M. Käll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering, Physical Review E, 62, (2000).
    [22] A. Otto, The “chemical” (electronic) contribution to surface-enhanced Raman scattering, J. Raman Spectrosc., 36(6-7), 497–509, (2005).
    [23] T. M. Cotton, S. G. Schultz, R. P. Van Duyne, Surface-Enhanced Resonance Raman Scattering from Cytochrome c and Myoglobin Adsorbed on a Silver Electrode, J. Am. Chem. Soc., 102, 7960– 7962, (1980).
    [24] E. Koglin, J. M. Sequaris, P. Valenta, H.W. Nürnberg, , Surface enhanced Raman spectra of nucleic acid components adsorbed at a silver electrode, J. Mol. Struct., 60, 421– 425, (1980).
    [25] C. C. Lin, Y. M. Yang, Y. F. Chen, T. S. Yang, H. C. Chang, A new protein A assay based on Raman reporter labeled immunogold nanoparticles. Biosensors and Bioelectronics, 24, 178–183, (2008).
    [26] N. R. Isola, D. L. Stokes, T Vo-Dinh, Surface enhanced Raman gene probe for HIV detection. Anal. Chem, 70, 1352–1356, (1998).
    [27] I. Delfino, A. R. Bizzarri, S. Cannistraro, Single-molecule detection of yeast cytochrome c by surface-enhanced Raman spectroscopy, Biophys. Chem, 113, 41-51, (2005).
    [28] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Phys. Rev. Lett. 76, 2444, (1996).
    [29] K. Kneipp, H. Kneipp, G. Deinum, I. Itzkan, R. R. Dasari, M. S. Feld, Appl. Spectrosc., 52, 175, (1998).
    [30] Y. C. Cao, R. C. Jin, C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science, 297, 1536-1540, (2002).
    [31] Kneipp K., Pohle W, Fabian H., J. Mol. Struct., 244, 183, (1991) .
    [32] D. L. Jeanmaire, R. P. Van Duyne, Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., 84, 1-20, (1977).
    [33] S. M. Nie, S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, 275, 1102-1106, (1997).
    [34] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. , 78, 1667-1670, (1997).
    [35] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, M. S. Feld, Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS), Phys. Rev., 57, 6281-6284, (1998).
    [36] A. Ambrosi, F. Airo, A. Merko, Enhanced gold nanoparticle based ELISA for a breast cancer biomarker, Anal Chem., 82 (3), 1151–1156, (2010)
    [37] N. Rodthongkum, R. Ramireddy, S. Thayumanavan, R. W. Vachet, Selective Enrichment and Sensitive Detection of Peptide and Protein Biomarkers in Human Serum Using Polymeric Reverse Micelles and MALDI-MS, Analys., 137(4), 1024–1030, (2010).
    [38] F. Feng, G. Zhi, H. S. Jia, L. Cheng, Y. T. Tian, X. J. Li, SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array, Nanotechnology, 20, 295501, (2009).
    [39] C.H. Chuang, Y. T. Chen, Raman scattering of L-tryptophan enhanced by surface plasmon of silver nanoparticles: vibrational assignment and structural determination. J. Raman Spectrosc., 40, 150–156, (2009).
    [40] M. L. Cheng, B. C. Tsai, J. Yang, Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Analytica Chimica Acta, 708, 89– 96, (2011).
    [41] Y.Y. Lin, J.D. Liao, Y.H. Ju, C.W. Chang, A.L. Shiau, Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus, Nanotechnology, 22, 185308, (2011).
    [42] K. A. Willets, R. P. Van Duyne, Localized surface plasmon spectroscopy and sensing, Annu. Rev. Phys. Chem., 58, 267-297, (2007).
    [43] Chi-Hung Chuanga,b and Yit-Tsong Chen. Raman scattering of L-tryptophan enhanced by surface plasmon of silver nanoparticles: vibrational assignment and structural determination. J. Raman Spectrosc., 40, 150–156, (2009).
    [44] D. J. Bergman, M. I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems , Physical Review Letters, 90, 2, 027402, (2003).
    [45] R. G. Freeman, K. G. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, Self-assembled metal colloid monolayers: an approach to SERS substrates, Science, 267, 1629-1632, (1995).
    [46] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett. 5, 1569-1574, (2005).
    [47] L. M. Chen, Y. N. Liu, Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy, Journal of Raman Spectroscopy, 43, 8, 986–991, ( 2012).
    [48] P. Negri, N. E. Marotta, L. A. Bottomley, R. A. Dluhy, Removal of surface contamination and self-assembled monolayers (SAMs) from silver (Ag) nanorod substrates by plasma cleaning with argon, Applied Spectroscopy, 65, 1, 66–74, (2011).
    [49] S. Zhu, X. Zhang, J. Cui, Y. Shi, X. Jiang, Z. Liu, J. Zhan, Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer, Analyst, 140, 2815–2822, (2015).
    [50] C. Fang, D. Brodoceanu, T. Kraus, N. H. Voelcker, Templated silver nanocube arrays for single-molecule SERS detection, RSC Adv., 3, 4288–4293, (2013).
    [51] L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Localized Surface Plasmon ResonanceSpectroscopy of Single Silver Nanocubes, Nano Lett., 5,2034-2038, (2005).
    [52] E. Hao and G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys., 120, 1, 1 .357-366, (2004).
    [53] N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, M. Pellarin, Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding, ACS Nano, 5,9450-9462, (2011).
    [54] Tobias König, Rajesh Kodiyath, Zachary A. Combs, Mahmoud. A. Mahmoud, Mostafa A. El-Sayed, Vladimir V. Tsukruk, Silver Nanocube Aggregates in Cylindrical Pores for Higher Refractive Index Plasmonic Sensing, Particle & Particle Systems Characterization, 31, 2, (2014).
    [55] K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles, Nano Letters, 3, 1087–1090, (2003).
    [56] Linda Gunnarsson, Tomas Rindzevicius, JurisPrikulis, BengtKasemo, Mikael Käll, ShengliZou, and George C. Schatz, Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions, J. Phys. Chem., B 109, 1079-1087, (2005).
    [57] Hongxing Xu, Mikael Käll, Modeling the optical response of nanoparticle-based surface plasmon resonance sensors, Sensors and Actuators B , 87, 244–249, (2002)
    [58] Pedro H. C. Camargo, Matthew Rycenga, Leslie Au, Younan Xia, Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes, Angewandte Chemie International Edition, 48, 12, 2180–2184, (2009).
    [59] Zhicheng Cai, Chungui Tian, Lei Wang, Baoli Wang, Honggang Fu, One-pot synthesis of silver particle aggregation as highly active SERS substrate, Journal of Raman Spectroscopy, 42, 1, 5–11,( 2011).
    [60] Garry P. Glaspell,1 Chen Zuo,2 and Paul W. Jagodzinsk, Surface Enhanced Raman Spectroscopy Using Silver Nanoparticles: The Effects of Particle Size and Halide Ions on Aggregation, Journal of Cluster Science, 16, 1, (2005).
    [61] P. K. Aravind, H. Metiu,Use of a perfectly conducting sphere to excite the plasmon of a flat surface. 1. Calculation of the local field with applications to surface-enhanced spectroscopy, The Journal of Physical Chemistry, 86, 5076 (1982)
    [62] J. K. Daniels and G. Chumanov, Nanoparticle−Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering, The Journal of Physical Chemistry B, 109, 17936, (2005).
    [63] R. T. Hill, J. J. Mock, Y. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti and D. R. Smith, Leveraging Nanoscale Plasmonic Modes to Achieve Reproducible Enhancement of Light, Nano Letters, 10, 4150, (2010).
    [64] S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu and M. Moskovits, Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide, Nano Letters, 12, 2088, (2012).
    [65] A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti and D. R. Smith,Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature, 492, 86, (2012).
    [66] D. Wang, W. Zhu, Y. Chu and K. B. Crozier,"High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering, Advanced Materials, 24, 4376, (2012).
    [67] L. Li, T. Hutter, A. S. Finnemore, F. M. Huang, J. J. Baumberg, S. R. Elliott, U. Steiner and S. Mahajan,Metal Oxide Nanoparticle Mediated Enhanced Raman Scattering and Its Use in Direct Monitoring of Interfacial Chemical Reactions, Nano Letters 12, 4242 (2012)
    [68] Stefan Glçggler, Alexander M. Grunfeld, Yavuz N. Ertas, Jeffrey McCormick, Shawn Wagner, P. Philipp M. Schleker, Louis-S. Bouchard, A Nanoparticle Catalyst for Heterogeneous Phase Para-Hydrogen-Induced Polarization in Water, Angewandte Chemie International Edition, 54, 8, 2452–2456, (2015).
    [69] Xu Liu, Nan Chen, Bingqian Han, Xuechun Xiao, Gang Chen, Igor Djerdjc, Yude Wang, Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity, Nanoscale, 7, 14872–14880, (2015).
    [70] D. S. Bykov, O. A. Schmidt, T. G. Euser, P. St. J. Russell, Flying particle sensors in hollow-core photonic crystal fibre, Nature Photonics, 9 , 461-466, (2015).
    [71] Stefan A. Maier, Pieter G. Kik, Harry A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett., 81, 9, 26 , (2002)
    [72] Sung Myung, Aniruddh Solanki, Cheoljin Kim, Jaesung Park, Kwang S. Kim, Ki-Bum Lee, Graphene-Encapsulated Nanoparticle-Based Biosensor for the Selective Detection of Cancer Biomarkers, 23, 19, , 2221–2225, 2011
    [73] Cho, Kikuo. Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory Volume 237 of Springer Tracts in Modern Physics illustrated. Springer. 2010.
    [74] C. Kittel, Introduction to Solid State Physics, Seventh Edition, John Wiley & Sons , 1996.
    [75] R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractived grating spectrum,” Philos. Mag. 4, 396–402 (1902).
    [76] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, 'Surface plasmon resonance effect in grating diffraction', Phys. Rev. Lett., 21, 1530-1533, 1968
    [77] E. Kretschmann, H. Raether. Radiative decay of non-radiative surface plas-mons excited by light. Z. Naturforschung, A 23:2135, 1968.11
    [78] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Physik, 216, 98 - 410, (1968).
    [79] K.A. Willets and R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 58 (1), 267-297, (2007).
    [80] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin, Germany: Springer-Verlag, 1988.
    [81] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Verlag, New York, (2007).
    [82] Stenner, M. D., Gauthier, D. J., Neifeld, M. A., The speed of information in a 'fast-light' optical medium, Nature, 425 (6959): 695–8, (2003).
    [83] Zeng, S.; Yong, Ken-Tye; Roy, Indrajit; Dinh, Xuan-Quyen; Yu, Xia; Luan, Feng. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics., 6 (3): 491–506, (2011).
    [84] E. Hao, G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys., 120, 357–366, (2004).
    [85] G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys, 330 (3), 377-445, (1908).
    [86] K.A. Willets, R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annu. Rev. Phys. Chem., 58(1), 267-297, 2007.
    [87] S. Link, M.A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods., J. Phys. Chem. B., 103 (40), 8410-8426, (1999).
    [88] R. Gans, Über die Form ultramikroskopischer Silberteilchen., Ann. Phys., 352 (10), 270-284, 1915
    [89] A.Taflov, Computational Electrodynamics:The Finite-Difference Time-Domain Method, Artech House, (2005)
    [90] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat., 14, 4, 302-307, (1966).
    [91] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation, 31, 629-651, (1977).
    [92] G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. on Electromag. Compat., 23, 4, 377-382, (1981).
    [93] Lloyd N. Trefethen, Laurence Halpern, Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions, Mathematics of computation, 47, 176, 421-435, (1986).
    [94] J.-P. Berenger,A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114, 185, (1994)
    [95] A. D. Rakic, A. B. Djurusic, J. M. Elazar, M. L. Majewski, Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices, Appl. Opt., 37, 5271, (1998)
    [96] Gholamhosain Haidari, Morteza Hajimahmoodzadeh, Hamid Reza Fallah, Andreas Peukert,Alina Chanaewa, and Elizabeth von Hauff, Thermally evaporated Ag nanoparticlefilms for plasmonic enhancementin organic solar cells: effects of particle geometry, Phys. Status Solidi RRL, 9, 3, 161-165, (2015).
    [97] Chong L.W., Chou Y.N., Lee Y.L., Wen T.C., Guo T.F., Hole-injection enhancement of top-emissive polymer light-emitting diodes by P3HT/FNAB modification of Ag anode, Organic Electronics, 10, 1141–1145, 2009.
    [98] Sun Y.; Xia Y. Shape-controlled synthesis of gold and silver nanoparticles, Science, 298, 2176-2179, 2002.

    下載圖示 校內:2021-01-18公開
    校外:2021-01-18公開
    QR CODE