| 研究生: |
楊理行 Yang, Li-Xing |
|---|---|
| 論文名稱: |
含鐵奈米粒子針對口腔癌細胞而非正常細胞所造成的選擇性毒殺之機制探討 The Mechanism of Iron-containing Nanoparticles Induced Selective Cytotoxicity in Oral Cancer Cells than Its Normal Counterpart |
| 指導教授: |
謝達斌
Shieh, Dar-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 鐵 、奈米 、口腔癌 、粒線體 、氧化壓力 、自噬作用 、選擇性毒殺 |
| 外文關鍵詞: | iron, nanoparticles, mitochondria, oral cancer, reactive oxygen species, autophagy, selective cytotoxicity |
| 相關次數: | 點閱:94 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔鱗狀細胞癌在許多開發中國家都是十大癌症之一,而在台灣更是男性癌症死亡率排行第四名的癌症。如何降低癌症治療副作用與死亡率對目前癌症治療是一個巨大的挑戰。
在我們之前的研究中發現,鐵核金殼複合型奈米粒子(Fe@Au)對口腔癌細胞具有選擇性毒殺的功能(DOK, OECM1, SCC25, HCDB1, SCC9),但相同劑量下對正常細胞並不會造成傷害(hNOK, HUVEC, Vero, gingiva fibroblast)。我們進一步又發現Fe@Au會造成癌細胞(OECM1)粒線體的膜電位喪失並引起細胞自噬作用導致癌細胞死亡。但對選擇性毒殺的詳細機制仍並不清楚。
在此研究中,我們發現許多含鐵奈米粒子(FeAu alloy, Fe@Ag, Armor-Fe, Fe@Mesoporous-Si)也具有和Fe@Au相同的選擇性毒殺功能。而在文獻中也有人發現鐵鉑合金奈米(FePt)對卵巢癌細胞(A2780)具有毒殺效果,這也暗示著「鐵」或許是一個重要的因子。因此,我們透過TEM的EDS分析這些含鐵奈米粒子中鐵和氧的比例與細胞毒性做比對,發現隨著氧化程度越高,這些含鐵奈米粒子對癌細胞的毒性就越低,因此我們認為其中未氧化的鐵是造成此選擇性毒殺的關鍵。我們更進一步發現這些具有大量未氧化鐵的含鐵奈米粒子會造成癌細胞的ROS與氧化壓力升高,造成粒線體膜電位的喪失,引起細胞自噬作用而導致細胞死亡。而動物實驗中也發現含有未氧化鐵的含鐵奈米粒子可以抑制腫瘤的生長。
總結來說,我們在這個研究中發現含鐵奈米粒子中的未氧化鐵扮演引發癌細胞ROS促使癌細胞經由自噬作用而死亡的角色。藉由這些發現我們期待未來能夠發展出更安全有效殺死癌細胞的新藥。
Oral squamous cell carcinoma is one of the top ten malignancies in many developing countries. According to Department of Health in Taiwan, oral cancer is ranked fourth leading cause of cancer death in male’s group. How to cure cancer while decrease the side effect and mortality is a big challenge to cancer therapy.
In previous published study, we discovered that iron-core-gold-shell nanoparticles (Fe@Au NPs) have selective cytotoxicity in oral cancer cells (DOK, OECM1, SCC25, HCDB1, SCC9), but not in normal cells (hNOK, HUVEC, Vero, and gingiva fibroblast). In addition, Fe@Au NPs can cause mitochondria membrane potential lost and induce autophagy in OEC-M1. However, the mechanism of the selective cytotoxicity remains unsolved.
In this study, we discovered that many iron-containing nanoparticles (FeAu alloy, Fe@Ag, Armor-Fe) also have the same selective cytotoxicity in OECM1. Furthermore, there is literature report that iron-platinum alloy (FePt) nanoparticles exhibit high cytotoxicity to ovarian cancer cell (A2780). These results suggest that iron element is a key factor in cytotoxicity effect. Base on this thinking, we identified through the Fe/O ratio analyzed by EDS that these iron-containing nanoparticles share one common characteristic, the non-oxidized iron, a possible key factor of the cytotoxicity. Otherwise, we also found that these iron-containing nanoparticles with high Fe/O ratio would induce severe ROS in cancer cells and caused irreversible mitochondria membrane potential lost. Furthermore, these iron-containing nanoparticles could also induce autophagy that caused autophagic cell death in cancer cells through the increased dose and time. In animal study, the iron-containing nanoparticles could inhibit tumor growth.
In summary, we discover from this study that the non-oxidized iron of the iron-containing nanoparticles can function as a ROS inducer that can cause cancer cell death through autophagy. According to these findings, we hope to develop a new theranostic anti-cancer drug that can kill cancer cells more effectively and safely in the future.
Azad, M. B., Chen, Y. & Gibson, S. B. (2009) “Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment.” Antioxid Redox Signal 11, 777-790.
Baehrecke, E. H. (2005) “Autophagy: dual roles in life and death?” Nature Rev Mol Cell Biol 6, 505-510.
Bodker, F., Morup, S. & Linderoth, S. (1994) “Surface effects in metallic iron nanoparticles.” Physical Review Letters 72(2), 282-285.
Boonstra, J. & Post, J. A. (2004) “Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells.“ Gene 337, 1–13.
Burda, C., Chen, X., et al. (2005) “Chemistry and properties of nanocrystals of different shapes.” Chem Rev 105, 1025-1102.
Chandran, S. S., Banerjee, S. R., et al. (2008) “Characterization of a targeted nanoparticle functionalized with a urea-based inhibitor of prostate-specific membrane antigen (PSMA).” Cancer Biol Ther 7, 974-982.
Chen, B., Wu, W. & Wang, X. (2011) “Magnetic iron oxide nanoparticles for tumor-targeted therapy.” Curr Cancer Drug Targets 11, 184-189.
Chen, G., Wang, F., et al. (2010) “Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds.” Mitochondrion 10, 614-625.
Chen, L. B. (1988) “Mitochondrial Membrane Potential in Living Cells.” Annu Rev Cell Biol 4, 155-181.
Chen, P. J., Su, C. H., (2011) “Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish.” Marine Pollution Bulletin 63, 339-346.
Chen, Y., McMillan-Ward, E., et al. (2008) “Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells.” Cell Death Differ 15(1), 171-182.
Chen, Y. J., Chang, J. T., et al. (2008) “Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis.” Cancer Sci 99, 1507-1514.
Cho, K., Wang, X., et al. (2008) “Therapeutic nanoparticles for drug delivery in cancer.” Clin Cancer Res 14, 1310-1316.
Cho, S. J., Jarrett, B. R. et al. (2006) “Gold-coated iron nanoparticles a novel magnetic resonance agent for T1 and T2 weight imaging.” Nanotechnology 17, 640-644.
Chou, S. W., Shau, Y. H., et al. (2010) “In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging.” J Am Chem Soc 132, 13270-13278.
Djavaheri-Mergny, M., Maiuri, M. C. & Kroemer, G. (2010) “Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1.” Oncogene 29, 1717-1719.
Elstrom, R. L., Bauer, D. E., et al. (2004) “Akt stimulates aerobic glycolysis in cancer cells.” Cancer Res 64, 3892-3899.
Ferlay, J., Shin, H. R., et al. (2011) “GLOBOCAN 2008, Cancer incidence and mortality worldwide.” IARC in CancerBase Vol. 2011 (ed. 10, N.)
Gao, J., Liang, G., et al. (2007) “FePt@CoS2 Yolk−Shell Nanocrystals as a Potent Agent to Kill HeLa Cells.” J Am Chem Soc 129 (5), 1428-1433.
Giouroudi, I. & Kosel, J. (2010) “Recent progress in biomedical applications of magnetic nanoparticles.” Recent Pat Nanotechnol 4, 111-118.
Griguer, C. E., Oliva, C. R. & Gillespie, G. Y. (2005) “Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines.” J Neurooncol 74, 123-133.
Holley, A. K., Dhar, S. K. & St Clair, D. K. (2010) “Manganese superoxide dismutase versus p53: the mitochondrial center.” Ann N Y Acad Sci 1201, 72-78.
Horák, D., Babič, M., et al (2009) “The effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling.” J Magn Magn Mater 321(10), 1539-1547.
Ito, A., Honda, H. & Kobayashi, T. (2006) “Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of "heat-controlled necrosis" with heat shock protein expression.” Cancer Immunol Immunother 55, 320-328.
Jain, T. K., Reddy, M. K. et al. (2008) “Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats.” Mol Pharm 5(2), 316-327.
Karihtala, P. & Soini, Y. (2007) “Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies.” APMIS 115, 81-103.
Karlsson, H. L., Cronholm, P., et al. (2008) “Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.” Chem Res Toxicol 21, 1726-1732.
Kievit, F. M. & Zhang, M. (2011) “Surface Engineering of Iron Oxide Nanoparticles for Targeted Cancer Therapy.” Acc Chem Res 44 (10), 853-862.
Kinnula, V. L. & Crapo, J. D. (2004) “Superoxide dismutases in malignant cells and human tumors.” Free Radical Biol Med 36, 718-744.
Kim, H. S., Kim, H., et al. (2010) “Evaluation of porcine pancreatic islets transplanted in the kidney capsules of diabetic mice using a clinically approved superparamagnetic iron oxide (SPIO) and a 1.5T MR scanner.” Korean J Radiol 11(6), 673-682.
Ko, Y. C., Huang, Y. L., et al. (1995). "Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan." J Oral Pathol Med 24(10): 450-453.
Kryston, T. B., Georgiev, A. B., et al. (2011) “Role of oxidative stress and DNA damage in human carcinogenesis.” Mutat Res 711, 193-201.
Kuma, A., Matsui, M. & Mizushima, N., (2007) “LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization.” Autophagy 3(4), 323-328.
Kumar, B., Koul, S., et al. (2008) “Oxidative Stress Is Inherent in Prostate Cancer Cells and Is Required for Aggressive Phenotype.” Cancer Res 68(6):1777-1785.
Le Belle, J. E., Orozco, N. M., et al. (2010) “Proliferative Neural Stem Cells Have High Endogenous ROS Levels that Regulate Self-Renewal and Neurogenesis in a PI3K/Akt-Dependant Manner. “ Cell Stem Cell 8(1), 59–71.
Lee, H. C., Chang, C. M. & Chi, C. W. (2010) “Somatic mutations of mitochondrial DNA in aging and cancer progression.” Ageing Res Rev 9 Suppl 1, S47-58.
Lehn, J. M. Supramolecular Ensembles: VTH: New York, 1995.
Lenardo, M. J., McPhee, C. K. & Yu, L. (2009) “Chapter 2 Autophagic Cell Death. in Methods in Enzymology”, Vol. Volume 453 (ed. Daniel, J.K.) 17-31 (Academic Press, 2009).
Lin, W. J., Jiang, R. S., et al. (2011). "Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study." J Oncol, 525976.
Liu, J. J., Lin, M., et al. (2011) “Targeting apoptotic and autophagic pathways for cancer therapeutics.” Cancer Lett 300, 105-114.
Maeda, H. (2010) “Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects.” Bioconjug Chem 21, 797-802.
Malins, D. C., Polissar, N. L. & Gunselman, S. J. (1996) “Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage.” Proc Natl Acad Sci U S A 93, 2557-2563.
Morley, A. A. & Turner, D. R. (1999) “The contribution of exogenous and endogenous mutagens to in vivo mutations.” Mutat Res 428, 11-15.
Phenrat, T., Long, T. C., et al. (2009) “Partial Oxidation (“Aging”) and Surface Modification Decrease the Toxicity of Nanosized Zerovalent Iron.” Environ. Sci. Technol 43(1), 195-200.
Puppi, J., Mitry, R. R., et al. (2011) “Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes.” Cell Transplant 20(6), 963-975.
Raj, L., Ide, T., et al. (2011) “Selective killing of cancer cells by a small molecule targeting the stress response to ROS.” Nature 475(7355), 231-234.
Rosi, N. L. & Mirkin, C. A. (2005) “Nanostructures in biodiagnostics.” Chem Rev 105, 1547-1562.
Rubinsztein, D. C., Gestwicki, J. E., et al. (2007) “Potential therapeutic applications of autophagy.” Nature Rev. Drug Discov 6, 304-312.
Sasaki, T., Moles, D. R., et al. (2005) “Clinico-pathological features of squamous cell carcinoma of the oral cavity in patients <40 years of age.” J Oral Pathol Med 34, 129-133.
Scherz-Shouval, R. & Elazar, Z. (2007) “ROS, mitochondria and the regulation of autophagy.” Trends Cell Biol 17(9), 422-427.
Scherz-Shouval, R. & Elazar, Z. (2011) “Regulation of autophagy by ROS: physiology and pathology.” Trends Biochem Sci 36(1), 30-38.
Ševců, A., El-Temsah, Y. S., et al. (2011) “Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles.” Microbes Environ 26(4), 271-281.
Shaw, A. T., Winslow, M. M., et al. (2011) “Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress.” Proc Natl Acad Sci U S A 108(21), 8773-8778.
Shieh, D. B., Cheng, F. Y., et al. (2005) “Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents.” Biomaterials 26(34), 7183-7191.
Shintani, T. & Klionsky, D. J. (2004) “Autophagy in health and disease: a double-edged sword”. Science 306, 990-995.
Singh, R. & Nalwa, H. S. (2011) “Medical Applications of Nanoparticles in Biological Imaging, Cell Labeling, Antimicrobial Agents, and Anticancer Nanodrugs.” J Biomed Nanotechnol 7(4), 489-503.
Soini, Y., Kallio, J. P., et al. (2006) “Oxidative/nitrosative stress and peroxiredoxin 2 are associated with grade and prognosis of human renal carcinoma.” APMIS 114, 329-337.
Spitz, D. R., Sim, J. E., et al. (2000) “Glucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism?” Ann N Y Acad Sci 899, 349-362.
Sullivan, D. C. & Ferrari, M. (2004) “Nanotechnology and tumor imaging: seizing an opportunity.” Mol Imaging 3, 364-369.
Sweet, S. & Singh, G. (1999) “Changes in mitochondrial mass, membrane potential, and cellular adenosine triphosphate content during the cell cycle of human leukemic (HL-60) cells.” J Cell Physiol 180, 91-96.
Szatrowski, T. P. & Nathan, C. F. (1991) “Production of large amounts of hydrogen peroxide by human tumor cells.” Cancer Res 51(3), 794-798.
Tanida, I., Minematsu-Ikeguchi, N., et al. (2005) “Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 is a Marker for Autophagy.” Autophagy 1(2), 84-91.
Taratula, O., Garbuzenko, O. B., et al. (2011) “Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA.” J Drug Target 19(10), 900-914.
Tassa, C., Shaw, S. Y. & Weissleder, R. (2011) “Dextran-Coated Iron Oxide Nanoparticles: A Versatile Platform for Targeted Molecular Imaging, Molecular Diagnostics, and Therapy.” Acc Chem Res 44 (10), 842-852.
Thurber, A., Wingett, D. G., et al. (2012) “Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.” Nanotoxicology 6,440-452.
Torchilin, V. P. (2007) “Targeted pharmaceutical nanocarriers for cancer therapy and imaging.” AAPS J 9, E128-147.
Torchilin, V. P. (2010) “Passive and active drug targeting: drug delivery to tumors as an example.” Handb Exp Pharmacol 197, 3-53.
Toyokuni, S., Okamoto, K. et al. (1995) “Persistent oxidative stress in cancer.” FEBS Lett 358, 1–3.
Trachootham, D., Alexandre, J. & Huang P. (2009) “Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?” Nat Rev Drug Discov 8(7), 579-591.
Tsantoulis, P. K., Kastrinakis, N. G. et al. (2007). "Advances in the biology of oral cancer." Oral oncology 43(6): 523-534.
Watts, T. (2005) “Oral oncology: Clinico-pathological features of squamous cell carcinoma of the oral cavity in patients <40 years of age.” Br Dent J 199, 209-209.
Weinhouse, S. (1976) “The Warburg hypothesis fifty years later.” Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 87, 115-126.
Wu, P. C., Wang, W. S., et al. (2007) “Porous iron oxide based nanorods developed as delivery nanocapsules.” Chemistry 13(14), 3878-3885.
Wu, Y. N., Chen, D. H., et al. (2011) “Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs.” Nanomedicine 7(4), 420-427.
Wu, Y. N., Yang, L. X., et al. (2011) “The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy.” Biomaterials 32(20), 4565-4573.
Xu, C, Yuan, Z, et al. (2009) “FePt Nanoparticles as Fe Reservoir for Controlled Fe Release and Tumor Inhibition.” J Am Chem Soc 131(42), 15346-15351.
Xu, K. & Thornalley, P. J. (2001) “Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro.” Biochem Pharmacol 61, 165-177.
Zhou, W. L., Carpenter, E. E., et al. (2001) “Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field.” Eur Phys J D 16, 289-292.