| 研究生: |
廖佳麒 Liao, Chia-Chi |
|---|---|
| 論文名稱: |
新型偏極化光學同調斷層掃描儀直接量測線性雙折射材料所有光學參數方法之研究 Direct Measurements in All Optical Parameters of Linear Birefringent Materials Using New Polarization-Sensitive Optical Coherence Tomography |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 雙折射 、尋常與非尋常折射係數 、偏極化光學同調性斷層掃描術 、高解析 |
| 外文關鍵詞: | Polarization-Sensitive Optical Coherence Tomogra, High resolution, Birefringence, Extraordinary and ordinary refractive indices |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學同調斷層掃描術(Optical Coherence Tomography)是以低同調干涉儀為基礎的光學造影技術,其可有效對樣品提供非侵入式之微米級橫截面影像。在先前的研究中,已經發展了使用光學同調斷層掃描的技術進行厚度與折射係數的量測,接著並發展出偏極化光學同調斷層掃描術(Polarization-Sensitive OCT)結合低同調干涉儀與雷射偏振干涉儀的特性,能夠檢測樣品各層構造變化引起的雙折射現象。
在本研究中,不需精準定位平台的偏極化光學同調斷層掃描儀,具有量測樣品的厚度、平均折射率、明顯相位延遲、光軸方位之能力已經被建構出來,而以這些傳統偏極化光學同調斷層掃描儀能量測的數值為基礎,更進一步發展延伸的演算,來得到實際的總相位延遲、樣品階數,以及雙折射特性。只要正確的階數與真正明顯相位延遲一旦決定,多階線性雙折射材料的尋常折射率與非尋常折射率便可推算得出。更進一步,利用熱光源產生的高解析度以及仔細的色散補償之後,產生能分辨出兩種折射率所造成差異之系統,於是一個直接精準量得雙折射材料的尋常折射率與非尋常折射率之方法亦成功提出。
整體而言,此研究發展了新型的偏極化光學同調斷層掃描量測方法,使系統具有量測單層雙折射材料的尋常折射率與非尋常折射率、厚度、相位延遲與光軸方位。根據作者所知,這是第一台新型偏極化低同調干涉儀在量測線性雙折射樣品中,具有全部光學參數量測的最完整功能。因此,此干涉儀可應用在相關光電產業,精密量測光學材料之多項光學參數。
Optical coherence tomography (OCT) based on the low coherence interferometry (LCI) is a powerful technique for performing in-depth cross-sectional imaging in scattering media for the resolution of micrometer without invasion. In earlier research, there have been report of the measurement of refractive index (n) and thickness (t) by use of OCT, and subsequently, the polarization-sensitive OCT (PSOCT) combining the properties of the low coherence interferometry and polarimetry has the ability to detect the birefringence induced by the structural change between any reflected layers.
A polarization-sensitive OCT without necessary high-precision scanning stage and stage controller for measurements in the thickness, mean refractive index, apparent phase retardation, and optical axis orientation has been established. In the research, the stretched derivation based on conventional PSOCT for the actual apparent phase retardation, the order and the birefringence are developed is present. The extraordinary and ordinary refractive indices of the sample can be extracted from the measured parameters once appropriate values of the order and apparent phase retardation of the multiple-order birefringent material have been specified. Furthermore, a method to directly extracting precise values for the extraordinary and ordinary refractive indices of a birefringent sample is developed by measuring the optical path difference induced by the two refractive indices, which requires the use of a thermal light source and careful dispersion compensation in order to improve the axial resolution.
As a result, the novel PSOCT system would have the capabilities in measuring the extraordinary and ordinary refractive indices, thickness, phase retardation and optical axis orientation of a single-layer birefringent sample. As the knowledge from author, this is the first instrument that could measure all the optical parameters of the linear birefringence materials from only one system. It is believed that this novel measuring system could be applied in the opto-electronics industries for highly precise measurements in various optical parameters.
Bouma, B. E. and Tearney, G. J., Boppart, S. A., Hee, M. R. Brezinski, M. E., and Fujimoto, J. G., "High-resolution optical coherence tomography imaging using a mode-lock Ti:Al2O3 laser source," Opt. Lett. Vol. 20, pp. 1486-1488, (1995)
Bouma, B. E., Tearney, G. J., Bilinsky, I. P., Golubovic, B., and Fujimoto, J. G., "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839- (1996)
Bouma, B. E. and Tearney, G. J., Handbook of optical coherence tomography, Marcel Dekker, New York (2002).
Dave, D. P., Akkin, T. and Milner, T. E., "Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence," Opt. Lett., Vol. 28, pp. 1775-1777 (2003)
Dubois, A., Vabre, L., Boccara, A. -C., and Beaurepaire, E., "High-Resolution Full-Field Optical Coherence Tomography with a Linnik Microscope," Appl. Opt. 41, 805-812 (2002)
Dubois, A., Grieve, K., Moneron, G., Lecaque, R., Vabre, L., and Boccara, C., "Ultrahigh-Resolution Full-Field Optical Coherence Tomography," Appl. Opt. 43, 2874-2883 (2004)
de Boer, J. F., Milner, T. E., van Gemert, M. J. C., and Nelson, J.S., "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 22, pp. 934-936 (1997)
de Groot, P., "Chromatic dispersion effects in coherent absolute ranging," Opt. Lett. 17, 898-890 (1992)
Drexler, W., Morgner, U., Krtner, F. X., Pitris, C., Boppart, S. A., Li, X. D., Ippen, E. P., and Fujimoto, J. G., "Invivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999)
Fercher, A.F., Hitzenberger, C.K., Sticker, M. E., Moreno-Barriuso E., Leitgeb, R., Drexler, W., and Sattmann, H., "A thermal light source technique for optical coherence tomography," Opt. Commun., Vol. 185, pp.57-64 (2000)
Fercher, A. F., Hitzenberger, C. K., Sticker, M., and Zawadzki, R., "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express, 9, 610-615 (2001)
Fercher, A. F., Drexler, W., Hitzenberger, C. K., and Lasser, T., "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003)
Fukano, T. and Yamaguchi, I., "Simultaneous measurement of thickness and refractive indices of multiple layers by a low coherence confocal microscope," Opt. Lett., Vol. 21, pp. 1942-1944 (1996)
Goodman, J.W., Statistical optics, New York, NY: John Wiley and Sons (1985)
Haruna, M., Ohmi, M., Mitsuyama, T., Tajiri, H., Maruyama, H., and Hashimoto, M., "Simultaneous measurement of the phase and group indices and thickness of transparent plates by low-coherence interferometry", Opt. Lett., Vol. 23, pp. 966-968 (1998)
Hee, M.R., Huang, D., Swanson, E.A., and Fujimoto, J.G., "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B, Vol. 9, pp. 903-908 (1992)
Hitzenberger, C. K., "Measurement of corneal thickness by low-coherence interferometry," Appl. Opt. 31, 6637- (1992)
Hitzenberger, C. K., Baumgartner, A., and Drexle,r W., "Dispersion effects in partical coherence interferometry: Implications for intraocular ranging," Journal of Biomedical optics, 4, 144-151 (1999)
Hitzenberger, C., Goetzinger, E., Sticker, M., Pircher, M., and Fercher, A., "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001)
Hoeling, B.M., Fernandez, A.D., Haskell, R.C., Huang, E., Myers, W.R., Petersen, D.C., Ungersma, S.E., Wan, G., and Williams, M.E., "An optical coherence microscope for 3-dimensional imaging in developmental biology," Optics Express. Vol. 6, pp. 136-146 (2000)
Izatt, J. A., Hee, M. R., Owen, G. M., Swanson, E. A., and Fujimoto, J. G., "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590- (1994)
Kemp, N. J., Park, J., Zaatari, H. N., Rylander, H. G., and Milner, T. E., "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography ," J. Opt. Soc. Am. A 22, 552-560 (2005)
Kwong, K.F., Yankelevich, D., Chu, K.C., Heritage, J.P., and Dienes, A., "400-Hz mechanical scanning optical delay line," Opt. Lett., Vol. 18, pp.558-560 (1993)
Laude, B., De Martino, A., Drevillon, B., Benatter, L., and Schwartz, L., "Full-field optical coherence tomography with thermal light," Appl. Opt., Vol. 41, pp.6637-6644 (2002)
Lo, Y. L., Kuo, C. I., Chuang, C.H., and Yan, Z.Z., "Optical coherence tomography system with no high-precision scanning stage and stage controller," Appl. Opt., Vol. 43, pp. 4142-4149, 2004.
Maruyama, H., Inoue, S., Mitsuyama, T., Ohmi, M., and Haruna, M., "Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness," Appl. Opt., Vol. 41, pp. 1315-1322 (2002)
Moreau, J., Loriette, V. and Boccara, A., "Full-field birefringence imaging by thermal light polarization-sensitive optical coherence tomography. I. Theory," Appl. Opt., Vol. 42, pp.3800-3810 (2003)
Moreau, J., Loriette, V. and Boccara, A., "Full-field birefringence imaging by thermal light polarization-sensitive optical coherence tomography. I. Theory," Appl. Opt., Vol. 42, pp.3800-3810 (2003)
Nishi, H., Itadani, T., Ohmi, M., and Haruna, M. "Tomography-based measurement of refractive index and thickness profiles by the low coherence interferometry," 16th Int'1 conf. Optical Fiber Sensors (OFS-16), pp. 764-767 (2003)
Oh, J. T. and Kim, S. W., "Polarization-sensitive optical coherence tomography for photoelasticity testing of galss/epoxy composites," Opt. Express, Vol. 11, pp.1669-1676 (2003)
Ohmi, M., ohnishi, Y., Yoden, K., and Haruna, M., "In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry," IEEE Trans. Biomed. Eng., Vol. 47, pp. 1266-1270 (2000)
Roth, J. E., Kozak, J. A., Yazdanfar, S., Rollins, A. M., and Izatt, J. A., "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 26, pp. 1069-1071 (2001)
Schoenenberger, K., Colston, B. W., Jr, Maitland, D. J., Da Silva, L. B., and Everett, M. J., "Mapping of birefringence and thermal damage in tissue by sue of polarization-sensitive optical coherence tomography," Appl. Opt., Vol. 37, pp. 6026-6036 (1998)
Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Hee, M. R., and Fujimoto, J. G., "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett., Vol. 20, pp. 2258-2261 (1995)
Sato, M., Wakaki, I., Watanabe, Y., and Tanno, N., "Fundamental characteristics of a synthesized light source for optical coherence tomography," Appl. Opt. 44, 2471-2481 (2005)
Schmitt, J.M., “Optical coherence tomography (OCT): A Review,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 1205–1215 (1999)
Schoenenberger, K., Colston, B. W., Jr, Maitland, D. J., Da Silva, L. B., and Everett, M. J., "Mapping of birefringence and thermal damage in tissue by sue of polarization-sensitive optical coherence tomography," Appl. Opt., Vol. 37, pp. 6026-6036 (1998)
Sticker, M., Hitzenberger, Leitgeb, C. K., R., and Fercher, A. F., "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography," Opt. Lett., 26, 518-520 (2001)
Swanson, E.A., Huang, D., Hee, M.R., Fujimoto, J.G., Lin, C.P., and Puliafito, C.A., "High-speed optical coherence domain reflectometry," Opt. Lett., Vol. 17, pp. 151-153 (1992)
Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Hee, M. R., and Fujimoto, J. G., "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995)
Tearney, G.J., Bouma, B.E., Boppart, S.A., Golubovic, B.E., Swanson, A., and Fujimoto, J.G., "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Opt. Lett., Vol. 21, pp.1408-1410 (1996)
Tearney, G. J., Bouma, B. E., and Fujimoto, J. G., "High-speed phase- andgroup-delay scanning with a grating-based phase controldelay line," Opt. Lett. 22, 1811-1813 (1997)
Wiesauer, K., Pircher, M., Goetzinger, E., Hitzenberger, C. K., Engelke, R., Ahrens, G., Gruetzner, G., and Stifter, D., "Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials," Opt. Express 14, 5945-5953 (2006)
Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley & Sons, Inc., Ch4 (1984)
Yeh, P. and Gu, C., Optics of Liquid Crystal Displays, Ch4., Wiley Interscience, New York (1999)
Youngquist, R. C., Carr, S., and Davies, D. E. N., "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett. 12, 158- (1987)
Zhao, Y., Chen, Z., Saxer, C., Xiang, S., de Boer, J. F., and Nelson, J. S., "phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett., 25, 114-116 (2000)
Zhang, Y., Sato, M., and Tanno, N., "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett. 26, 205-207 (2001)