簡易檢索 / 詳目顯示

研究生: 李明哲
Lee, Ming-Che
論文名稱: 藉由丁酸鈉抑制去乙醯基酵素活性以減緩新生鼠缺氧窒息腦傷
Inhibition of HDAC activity by sodium butyrate attenuates hypoxic-ischemic injury in the neonatal brain
指導教授: 黃朝慶
Huang, Chao-Ching
蔡坤哲
Tsai, Kuen-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 43
中文關鍵詞: 去乙醯基酵素缺氧窒息丁酸鈉幼鼠
外文關鍵詞: histone deacetylase, hypoxic-ischemic, heat shock protein 70, sodium butyrate, neonatal rat
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Background: 新生兒缺氧窒息腦病變是造成嬰幼兒神經病變最常見的原因,除了嚴重威脅新生兒的生命,在存活者中也常導致永久性的神經缺陷諸如腦性麻痺、智能障礙和癲癇。然而,至今仍然沒有非常有效的治療方法。近年來一些研究指出,在一些神經退化性疾病如阿茲海默或是腦中風的動物實驗中發現,藉由抑制劑抑制去乙醯基酵素(HDAC)活性而增加組織蛋白(histone)上的乙醯化可以有治療的效果。而去乙醯基酵素的抑制劑提供的保護機制可能是藉由使組織蛋白上的乙醯化增加,進而促使細胞中一些促活基因被轉錄出來。
    Hypothesis因此在我們的研究中,我們提出一個假設想證明藉由丁酸鈉(sodium butyrate;SB)增加組織蛋白上的乙醯化,可以提供1)神經保護以抵抗缺氧窒息的傷害2)透過增加組蛋白上的乙醯化修飾增加神經細胞在缺氧後的可塑性(neuroplasticity)和促活基因的表現。
    Materials and methods: 在前處理的部分,從幼鼠出生的第一天到第七天,我們每天利用腹腔注射的方式注射丁酸鈉(劑量:1.2和1.8克/公斤)到幼鼠體內,另以注射生理食鹽水的組別做為對照組。在第七天時,經過單側右頸動脈結紮缺血以及兩小時,8%氧氣缺氧處理。後續利用western blotting分析組蛋白的乙醯化、細胞凋亡、發炎反應,以及利用Morris water maze和inhibitory avoidance test觀察注射丁酸鈉之後學習及記憶能力是否有改善,另外也利用Nissl staining染色來觀察老鼠的腦傷程度。在後處理的部分,我們在老鼠出生第7天缺氧,在第42到49天連續四週注射丁酸鈉,然後同樣在42到49天時利用行為實驗觀察老鼠的學習記憶能力和腦傷程度。
    Results: 在前處理的部分,我們發現相較於對照組,注射1.8克/公斤丁酸鈉的幼鼠能有效的減緩在不同腦區如大腦皮層(cortex)、海馬迴(hippocampus)以及紋狀體(striatum)的傷害,而且使幼鼠在行為實驗中有更好的表現,相較於對照組。在western blotting中也發現,丁酸鈉的前處理可以明顯的增加細胞中組蛋白上的乙醯化如histone H3, H4並降低細胞凋亡(caspase-3, PARP)和發炎反應(cox-2, p53)。丁酸鈉的前處理也增加了Bcl-xL和HSP70的mRNA表現。我們更進一步發現丁酸鈉處理也增加了調控HSP70的轉錄因子Sp1的乙醯化。在丁酸鈉後處理的實驗中,我們發現丁酸鈉無法提供在組織學上及學習記憶上的保護。
    Conclusion: 丁酸鈉在缺氧前的前處理可以對新生幼鼠的腦部提供有效的神經保護,這個保護可能是藉由抑制細胞凋亡和發炎反應的發生,以及可能透過增加Sp1乙醯化提高HSP70的表現達到的。相對地,在缺氧的丁酸鈉後處理不法提供增加神經可塑性的而產生保護效果。

    Background: Hypoxic-ischemia (HI) encephalopathy is a major cause of neonatal mortality and subsequent neurodevelopmental disability in the surviving infants, however, there is still no effective treatment. Recent studies have showed that increased histone acetylation by inhibitors of histone deacetylase (HDAC) protects against neurodegenerative disorders and acute cerebral ischemia in adult animals. The neuroprotective effect of HDAC inhibitors involves transcription activation through increasing histone acetylation of prosurvival genes.
    Hypothesis: This study was to test the hypotheses that increased histone acetylation by a HDAC inhibitor- sodium butyrate (SB): 1) provides neuroprotection against HI, and 2) increases neuroplasticity after HI in the neonatal rat brain through chromatin remodeling and upregulating protective factors.
    Materials and methods: In the pre-treatment part, we intraperitoneally injected SB (1.2 and 1.8 g/kg) or vehicle (normal saline) daily in SD rat pups from postnatal (P) day 1 to P7. On P7, rats were subjected to HI induced by permanent ligation of unilateral carotid artery followed by 2 hours of 8% O2 hypoxia at 37°C. Histone acetylation, apoptosis and inflammatory marker activity were investigated by western blotting before and after HI. Behavior test was performed by Morris water maze ,and inhibitory avoidance test from P42 to P49, and brain injury was investigated by pathology on P49. In the post-treatment part, we treated the pups with SB or vehicle daily after HI from P14 to P42. Behavior test measured by Morris water maze test and inhibitory avoidance test was done from P42 to P49 and brain injury by pathology on P49.
    Results: In the pretreatment part, compared with vehicle, SB pretreatment (1.8g/kg) significantly reduced HI injury in the cortex (P<0.001), striatum (P<0.05) and hippocampus (P<0.01) and improved learning and memory performance (P <0.05). SB pretreatment (1.2g/kg) didn’t show protective effect in pathology and learning and memory performance, compared with vehicle group. Western blotting analysis showed that SB (1.8g/kg) increased acetylation levels of histone H3 and H4, and down-regulated apoptotic (caspase-3, PARP) and inflammatory (COX-2, p53) markers after HI. SB also increased Bcl-xL mRNA expression (3.2 fold) and heat shock protein 70 (HSP70) mRNA and protein levels. We also found that SB upregulated acetylation levels of Sp1, a transcription factor of HSP70. In the post-HI treatment part, SB post-treatment did not provide protective effect at pathology and behavioral levels.
    Conclusion: SB treatment before HI provides neuroprotection in the neonatal rat brain in association with down-regulating apoptotic and inflammatory responses and up-regulating HSP70 possibly through Sp1 acetylation. In contrast, SB post-treatment after HI does not upregulate neuroplasticity.

    INTRODUCTION 1 Neonatal hypoxic-ischemic encephalopathy 1 HDAC inhibition in neuroprotection 2 HDAC inhibition and neuroplasticity 3 Heat shock protein 70 and HDAC inhibition 3 MATERIALS and METHODS 6 Animals 6 Unilateral HI injury 6 Morris water maze behavior test 7 Inhibitory avoidance behavior test 7 Histopathological studies 8 Brain volume measurement 8 Immunobloting analysis, preparation of nuclei protein, and immunoprecipitation 9 RNA extraction 10 RT-PCR 11 Statistics 12 RESULTS 13 I. SB Pretreatment Part for Neuroprotection 13 SB pretreatment decreased body weight and increased mortality during hypoxic-ischemia. 13 SB pretreatment protected against hypoxic-ischemic injury at behavioral and pathological levels 13 Morris water maze 13 Inhibitory avoidance 14 Severity of brain injury 14 SB induced hyperacetylation of Histone H3 and H4 levels 14 SB upregulated HSP70 mRNA and protein levels 14 SB increased prosurvival markers after hypoxic-ischemia 15 SB reduced proinflammatory and proapoptotic makers after hypoxic ischemia 15 SB induced increasing of Sp1 acetylation is associated with HSP 70 induction 16 II. SB Post-treatment Part for Neuroplasticity 16 SB posttreatment failed to recover impaired learning and memory performance after of hypoxic-ischemia 16 DISCUSSION 18 REFERENCES 23 APPENDIX 28

    Arteni, N. S., J. Salgueiro, et al. (2003). "Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat." Brain Res 973(2): 171-8.
    Azzopardi, D. V., B. Strohm, et al. (2009). "Moderate hypothermia to treat perinatal asphyxial encephalopathy." N Engl J Med 361(14): 1349-58.
    Badr Zahr, L. K. and I. Purdy (2006). "Brain injury in the infant: the old, the new, and the uncertain." J Perinat Neonatal Nurs 20(2): 163-75; quiz 176-7.
    Batulan, Z., G. A. Shinder, et al. (2003). "High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1." J Neurosci 23(13): 5789-98.
    Batulan, Z., D. M. Taylor, et al. (2006). "Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis." Neurobiol Dis 24(2): 213-25.
    Beere, H. M. (2005). "Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways." J Clin Invest 115(10): 2633-9.
    Chang, J. G., H. M. Hsieh-Li, et al. (2001). "Treatment of spinal muscular atrophy by sodium butyrate." Proc Natl Acad Sci U S A 98(17): 9808-13.
    Chuang, D. M., Y. Leng, et al. (2009). "Multiple roles of HDAC inhibition in neurodegenerative conditions." Trends Neurosci 32(11): 591-601.
    Davie, J. R. (2003). "Inhibition of histone deacetylase activity by butyrate." J Nutr 133(7 Suppl): 2485S-2493S.
    Dirnagl, U., C. Iadecola, et al. (1999). "Pathobiology of ischaemic stroke: an integrated view." Trends Neurosci 22(9): 391-7.
    Dore, S., T. Otsuka, et al. (2003). "Neuronal overexpression of cyclooxygenase-2 increases cerebral infarction." Ann Neurol 54(2): 155-62.
    Drummond, D. C., C. O. Noble, et al. (2005). "Clinical development of histone deacetylase inhibitors as anticancer agents." Annu Rev Pharmacol Toxicol 45: 495-528.
    Edwards, A. D. and D. V. Azzopardi (2006). "Therapeutic hypothermia following perinatal asphyxia." Arch Dis Child Fetal Neonatal Ed 91(2): F127-31.
    Faraco, G., T. Pancani, et al. (2006). "Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain." Mol Pharmacol 70(6): 1876-84.
    Ferrante, R. J., J. K. Kubilus, et al. (2003). "Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice." J Neurosci 23(28): 9418-27.
    Ferriero, D. M. (2004). "Neonatal brain injury." N Engl J Med 351(19): 1985-95.
    Fischer, A., F. Sananbenesi, et al. (2007). "Recovery of learning and memory is associated with chromatin remodelling." Nature 447(7141): 178-82.
    Giffard, R. G. and M. A. Yenari (2004). "Many mechanisms for hsp70 protection from cerebral ischemia." J Neurosurg Anesthesiol 16(1): 53-61.
    Gifondorwa, D. J., M. B. Robinson, et al. (2007). "Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis." J Neurosci 27(48): 13173-80.
    Greene, J. M., Z. Larin, et al. (1987). "Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines." Mol Cell Biol 7(10): 3646-55.
    Guan, J. S., S. J. Haggarty, et al. (2009). "HDAC2 negatively regulates memory formation and synaptic plasticity." Nature 459(7243): 55-60.
    Hendrick, J. P. and F. U. Hartl (1993). "Molecular chaperone functions of heat-shock proteins." Annu Rev Biochem 62: 349-84.
    Heneka, M. T., V. Gavrilyuk, et al. (2003). "Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression." J Neurochem 85(2): 387-98.
    Hockly, E., V. M. Richon, et al. (2003). "Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease." Proc Natl Acad Sci U S A 100(4): 2041-6.
    Hu, B. R., C. L. Liu, et al. (2000). "Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation." J Cereb Blood Flow Metab 20(9): 1294-300.
    Johnston, M. V. (2001). "Excitotoxicity in neonatal hypoxia." Ment Retard Dev Disabil Res Rev 7(4): 229-34.
    Juan, L. J., W. J. Shia, et al. (2000). "Histone deacetylases specifically down-regulate p53-dependent gene activation." J Biol Chem 275(27): 20436-43.
    Kanai, H., A. Sawa, et al. (2004). "Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons." Pharmacogenomics J 4(5): 336-44.
    Kim, H. J., P. Leeds, et al. (2009). "The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain." J Neurochem 110(4): 1226-40.
    Kim, H. J., M. Rowe, et al. (2007). "Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action." J Pharmacol Exp Ther 321(3): 892-901.
    Langley, B., J. M. Gensert, et al. (2005). "Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents." Curr Drug Targets CNS Neurol Disord 4(1): 41-50.
    Leker, R. R., M. Aharonowiz, et al. (2004). "The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha." Exp Neurol 187(2): 478-86.
    Leng, Y. and D. M. Chuang (2006). "Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity." J Neurosci 26(28): 7502-12.
    Magrane, J., K. M. Rosen, et al. (2005). "Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response." J Neurosci 25(47): 10960-9.
    Magrane, J., R. C. Smith, et al. (2004). "Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons." J Neurosci 24(7): 1700-6.
    Marcuccilli, C. J., S. K. Mathur, et al. (1996). "Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock." J Neurosci 16(2): 478-85.
    Marinova, Z., M. Ren, et al. (2009). "Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation." J Neurochem 111(4): 976-87.
    Monneret, C. (2005). "Histone deacetylase inhibitors." Eur J Med Chem 40(1): 1-13.
    Morgan, W. D. (1989). "Transcription factor Sp1 binds to and activates a human hsp70 gene promoter." Mol Cell Biol 9(9): 4099-104.
    Morimoto, R. I. and M. G. Santoro (1998). "Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection." Nat Biotechnol 16(9): 833-8.
    Morris, R. (1984). "Developments of a water-maze procedure for studying spatial learning in the rat." J Neurosci Methods 11(1): 47-60.
    Narotsky, M. G., E. Z. Francis, et al. (1994). "Developmental toxicity and structure-activity relationships of aliphatic acids, including dose-response assessment of valproic acid in mice and rats." Fundam Appl Toxicol 22(2): 251-65.
    Netto, C. A., R. D. Dias, et al. (1985). "Interaction between consecutive learnings: inhibitory avoidance and habituation." Behav Neural Biol 44(3): 515-20.
    Pandey, P., A. Saleh, et al. (2000). "Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90." EMBO J 19(16): 4310-22.
    Peng, G. S., G. Li, et al. (2005). "Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia." Brain Res Mol Brain Res 134(1): 162-9.
    Petri, S., M. Kiaei, et al. (2006). "Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis." Neurobiol Dis 22(1): 40-9.
    Pirkkala, L., P. Nykanen, et al. (2001). "Roles of the heat shock transcription factors in regulation of the heat shock response and beyond." FASEB J 15(7): 1118-31.
    Pore, N., S. Liu, et al. (2004). "Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism." Mol Biol Cell 15(11): 4841-53.
    Ravagnan, L., S. Gurbuxani, et al. (2001). "Heat-shock protein 70 antagonizes apoptosis-inducing factor." Nat Cell Biol 3(9): 839-43.
    Ren, M., Y. Leng, et al. (2004). "Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction." J Neurochem 89(6): 1358-67.
    Rice, J. E., 3rd, R. C. Vannucci, et al. (1981). "The influence of immaturity on hypoxic-ischemic brain damage in the rat." Ann Neurol 9(2): 131-41.
    Richon, V. M., T. W. Sandhoff, et al. (2000). "Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation." Proc Natl Acad Sci U S A 97(18): 10014-9.
    Ryu, H., J. Lee, et al. (2003). "Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway." Proc Natl Acad Sci U S A 100(7): 4281-6.
    Ryu, H., K. Smith, et al. (2005). "Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice." J Neurochem 93(5): 1087-98.
    Schroeder, F. A., C. L. Lin, et al. (2007). "Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse." Biol Psychiatry 62(1): 55-64.
    Shankaran, S., A. R. Laptook, et al. (2005). "Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy." N Engl J Med 353(15): 1574-84.
    Shen, H. Y., J. C. He, et al. (2005). "Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice." J Biol Chem 280(48): 39962-9.
    Sumner, C. J., T. N. Huynh, et al. (2003). "Valproic acid increases SMN levels in spinal muscular atrophy patient cells." Ann Neurol 54(5): 647-54.
    Tagawa, K., S. Marubuchi, et al. (2007). "The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes." J Neurosci 27(4): 868-80.
    Vigushin, D. M. and R. C. Coombes (2002). "Histone deacetylase inhibitors in cancer treatment." Anticancer Drugs 13(1): 1-13.
    Yenari, M. A., J. Liu, et al. (2005). "Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection." Ann N Y Acad Sci 1053: 74-83.
    Yi, J. H., S. W. Park, et al. (2007). "Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage." Neurochem Int 50(7-8): 1014-27.
    Zhao, H., T. Shimohata, et al. (2005). "Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats." J Neurosci 25(42): 9794-806.
    Zheng, Z., J. Y. Kim, et al. (2008). "Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke." J Cereb Blood Flow Metab 28(1): 53-63.
    Zhu, C., F. Xu, et al. (2006). "Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia." J Neurochem 96(4): 1016-27.

    下載圖示 校內:2013-02-04公開
    校外:2013-02-04公開
    QR CODE