簡易檢索 / 詳目顯示

研究生: 曾雅羚
Tseng, Ya-Ling
論文名稱: 聚丁二酸丁二醇酯與同分異構物高分子摻合體之環狀/枝狀扇形分割複合球晶
Spherulites Sectored into Complex Ringed/Dendritic Faces in Poly(butylene succinate) Crystallized with an Isomeric Polymer
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 46
中文關鍵詞: 聚丁二酸丁二醇酯聚己二酸二乙酯生物可分解性高分子環帶狀球晶枝狀球晶扇形球晶
外文關鍵詞: poly(butylene succinate), poly(ethylene adipate), biopolymer, ring-banded spherulite, dendritic spherulites, sector-face spherulites
相關次數: 點閱:62下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用偏光顯微鏡(POM)、電子顯微鏡(SEM)及原子力顯微鏡(AFM)探討生物可分解性高分子聚丁二酸丁二醇酯(PBSu)與其同分異構物高分子聚己二酸二乙酯(PEA)摻合體之結晶行為,透過改變不同的參數觀察其對球晶形貌、晶板排列方式所產生之影響,並推測其生長機制。
    在PBSu / PEA摻合系統中,首先在crystalline/armophous情況下改變組成比例及結晶溫度(Tc)以POM進行球晶形貌的初步觀察,並發現隨著PEA含量增加或結晶溫度(Tc)提高會有不同的形貌:球晶會從單一的環帶狀形貌,先轉變成被扇形分割成環帶狀與枝狀的雙型態球晶——sector-face球晶,最後再變成單一的枝狀球晶。在PBSu / PEA摻合系統為crystalline/crystalline下,探討兩高分子間相互結晶對形貌之影響,並推測其結晶行為。之後利用SEM及AFM分別針對環狀球晶、sector-face球晶以及枝狀球晶做進一步的分析,並探討球晶上表面及內部晶板的排列與推測其生長機制,最後聯結三種球晶晶板排列的關聯性。透過本研究的鑑定,可以了解球晶晶板排列方式不論是在單一形貌的球晶或複合球晶中,相同形貌之間晶板會有相似的排列方法及生長機制。

    Morphology investigations were conducted on crystal assembly mechanisms resulted from melt-crystallization of nonequimolar blends of poly(butylene succinate) (PBSu) with isomeric poly(ethylene adipate) (PEA). For PBSu/PEA blend systems, as crystallization temperature (Tc) and PEA content increase, the morphology of PBSu changes from ring-banded to sector-face pattern, and finally becomes dendritic morphology. Sector-face spherulites means a single spherulite sectored into two distinct patterns. In addition, we also utilize atomic force microscopy (AFM) and scanning electron microscopy (SEM) to observe top surface and fractured surface in order to explore the inner lamellar arrangement. Combining both top surface and fractured surface analyses, reasonable growth mechanisms of three types of spherulite (ring-banded, dendritic, sector-face) in PBSu/PEA blend systems were proposed. For both faces (ring-banded vs. dendritic) of the sector-face PBSu spherulites, lamellar assembly mechanism differs, but the growth is similar by repeating with periodic multiplication of fractal branches (whose number is proportional to square of radius) in the next cycle; thus, the lamellae fractal branches not only able to interpret the periodic optical banding, but also account for filling the expanding spherulite.

    中文摘要 I Abstract II 誌謝 XI 目錄 XIII 圖目錄 XV 第一章 研究目的與文獻回顧 1 1.1 簡介 1 1.2 球晶發展之歷史背景與模型 2 1.3 PBSu之相關研究 14 1.4 研究動機與方向 16 第二章 實驗材料與方法 17 2.1實驗藥品與材料 17 2.2 樣品製備 18 2.3 實驗使用之儀器與方法 18 第三章 結果與討論 20 3.1 PBSu/PEA 混摻系統球晶形貌分析 20 3.2球晶上表面與內部晶板排列 25 3.2.1 環帶狀球晶 26 3.2.2 枝狀球晶 30 3.2.3 扇形球晶 34 第四章 結論 38 參考文獻 39 附錄 (Supporting information) 43

    [1] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer bulletin, vol. 62, pp. 225-235, 2009.
    [2] L. Chang and E. M. Woo, "Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid)," Polymer, vol. 52, pp. 68-76, 2011.
    [3] Y. P. Huang, J. F. Kuo, and E. M. Woo, "Influence of molecular interactions on spherulite morphology in miscible poly(ethylene oxide)/epoxy network versus poly(ethylene oxide)/poly(4‐vinyl phenol) blend," Polymer international, vol. 51, pp. 55-61, 2002.
    [4] E. Murayama, "Optical properties of ringed spherulites," Polymer Preprints Japan, vol. 51, pp. 460-462, 2002.
    [5] A. Toda, T. Arita, M. Hikosaka, J. K. Hobbs, and M. J. Miles, "An atomic force microscopy observation of poly(vinylidene fluoride) banded spherulites," Journal of Macromolecular Science, Part B, vol. 42, pp. 753-760, 2003.
    [6] J. Schultz and D. Kinloch, "Transverse screw dislocations: A source of twist in crystalline polymer ribbons," Polymer, vol. 10, pp. 271-278, 1969.
    [7] J. Eshelby, "Screw dislocations in thin rods," Journal of Applied Physics, vol. 24, pp. 176-179, 1953.
    [8] A. Toda, K. Taguchi, and H. Kajioka, "Instability-driven branching of lamellar crystals in polyethylene spherulites," Macromolecules, vol. 41, pp. 7505-7512, 2008.
    [9] A. Toda, M. Okamura, K. Taguchi, M. Hikosaka, and H. Kajioka, "Branching and higher order structure in banded polyethylene spherulites," Macromolecules, vol. 41, pp. 2484-2493, 2008.
    [10] J. M. Schultz, "Self-induced field model for crystal twisting in spherulites," Polymer, vol. 44, pp. 433-441, 2003.
    [11] B. Lotz and S. Z. D. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, vol. 46, pp. 577-610, 2005.
    [12] Y. O. Punin and A. Shtukenberg, "Autodeformation Defects in Crystals,"St. Petersburg University Press: St. Petersburg, Russia, 2008.
    [13] T. Ikehara and T. Kataoka, "Relation between the helical twist and S-shaped cross section of the lamellar crystals of polyethylene," Scientific reports, vol. 3, pp. 1444-1447, 2013.
    [14] M. Kunz, M. Drechsler, and M. Möller, "On the structure of ultra-high molecular weight polyethylene gels," Polymer, vol. 36, pp. 1331-1339, 1995.
    [15] E. M. Woo, L. Y. Wang, and S. Nurkhamidah, "Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form," Macromolecules, vol. 45, pp. 1375-1383, 2012.
    [16] G. Lugito and E. M. Woo, "Interior lamellar assembly in correlation to top-surface banding in crystallized poly(ethylene adipate)," Crystal Growth & Design, vol. 14, pp. 4929-4936, 2014.
    [17] E. M. Woo, K. C. Yen, Y. T. Yeh, and L. Y. Wang, "Biomimetically Structured Lamellae Assembly in Periodic Banding of Poly(ethylene adipate) Crystals," Macromolecules, vol. 51, pp. 3845-3854, 2018.
    [18] C. Tu, E. M. Woo, and G. Lugito, "Structured growth from sheaf-like nuclei to highly asymmetric morphology in poly(nonamethylene terephthalate)," RSC Advances, vol. 7, pp. 47614-47618, 2017.
    [19] E. M. Woo, S. Nurkhamidah, and Y. F. Chen, "Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate)," Physical Chemistry Chemical Physics, vol. 13, pp. 17841-17851, 2011.
    [20] E. M. Woo and S. Nurkhamidah, "Surface nanopatterns of two types of banded spherulites in poly(nonamethylene terephthalate) thin films," The Journal of Physical Chemistry B, vol. 116, pp. 5071-5079, 2012.
    [21] E. M. Woo and Y. F. Chen, "Single-and double-ring spherulites in poly(nonamethylene terephthalate)," Polymer, vol. 50, pp. 4706-4717, 2009.
    [22] M. S. Lee and E. M. Woo, "Systematic probing into periodic lamellar assembly via induced cracks in crystallized polyesters," Polymer, vol. 166, pp. 88-97, 2019.
    [23] S. Nurkhamidah and E. M. Woo, "Mechanisms of Multiple Types of Lamellae and Spherulites in Poly(l‐lactic acid) Interacting with Poly(4‐vinyl phenol)," Macromolecular Chemistry and Physics, vol. 214, pp. 2345-2354, 2013.
    [24] E. M. Woo, H. Ni’mah, and Y. H. Wang, "Anisotropic Nucleation and Janus-Faced Crystals of Poly(l-lactic acid) Interacting with an Amorphous Diluent," Industrial & Engineering Chemistry Research, vol. 53, pp. 9772-9780, 2014.
    [25] G. Lugito and E. M. Woo, "Asymmetric Growth of Co-Crystallized Nano-and Micrometer-Sized Lamellae to Janus-Faced Spherulites in Poly(l-lactic acid) with Amorphous Poly(methyl methacrylate)," Crystal Growth & Design, vol. 17, pp. 5034-5037, 2017.
    [26] Y. T. Yeh and E. M. Woo, "Anatomy into Interior Lamellar Assembly in Nuclei-Dependent Diversified Morphologies of Poly(l-lactic acid)," Macromolecules, vol. 51, pp. 7722-7733, 2018.
    [27] J. Zhang, L. Li, S. Song, H. Feng, P. Chen, Z. Wang, et al., "Synchronous architecture of ring-banded and non-ring-banded morphology within one spherulite based on in situ ring-opening polymerization of cyclic butylene terephthalate oligomers," RSC Advances, vol. 6, pp. 94524-94530, 2016.
    [28] Y. H. Mandala, E. M. Woo, H. Ni'mah, and S. Nurkhamidah, "Surface-relief and interior lamellar assembly in Janus-face spherulites of Poly(butylene succinate) crystallized with Poly(ethylene oxide)," Polymer, 2019.
    [29] M. Yasuniwa and T. Satou, "Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt‐crystallized samples," Journal of Polymer Science Part B: Polymer Physics, vol. 40, pp. 2411-2420, 2002.
    [30] M. Yasuniwa, S. Tsubakihara, T. Satou, and K. Iura, "Multiple melting behavior of poly(butylene succinate). II. Thermal analysis of isothermal crystallization and melting process," Journal of Polymer Science Part B: Polymer Physics, vol. 43, pp. 2039-2047, 2005.
    [31] E. Yoo and S. Im, "Melting behavior of poly(butylene succinate) during heating scan by DSC," Journal of Polymer Science Part B: Polymer Physics, vol. 37, pp. 1357-1366, 1999.
    [32] J. C. Lee, H. Tazawa, T. Ikehara, and T. Nishi, "Miscibility and Crystallization Behavior of Poly(butylene succinate) and Poly(vinylidene fluoride) Blends," Polymer journal, vol. 30, p. 327-339, 1998.
    [33] Z. Qiu, T. Ikehara, and T. Nishi, "Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide)," Polymer, vol. 44, pp. 2799-2806, 2003.
    [34] T. Ikehara, H. Kurihara, and T. Kataoka, "Effect of poly(butylene succinate) crystals on spherulitic growth of poly(ethylene oxide) in binary blends of the two substances," Journal of Polymer Science Part B: Polymer Physics, vol. 47, pp. 539-547, 2009.
    [35] F. Yang and Z. Qiu, "Miscibility and crystallization behavior of biodegradable poly(butylene succinate)/tannic acid blends," Industrial & Engineering Chemistry Research, vol. 50, pp. 11970-11974, 2011.
    [36] Z. Qiu, M. Komura, T. Ikehara, and T. Nishi, "Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization," Polymer, vol. 44, pp. 8111-8117, 2003.
    [37] Z. Qiu and W. Yang, "Crystallization kinetics and morphology of poly(butylene succinate)/poly(vinyl phenol) blend," Polymer, vol. 47, pp. 6429-6437, 2006.
    [38] I. H. Huang, L. Chang, and E. M. Woo, "Tannin induced single crystalline morphology in poly(ethylene succinate)," Macromolecular Chemistry and Physics, vol. 212, pp. 1155-1164, 2011.
    [39] S. Nurkhamidah, E. M. Woo, I. H. Huang, and C. C. Su, "Phase behavior and crystal morphology in poly(ethylene succinate) biodegradably modified with tannin," Colloid and Polymer Science, vol. 289, p. 1563, 2011.
    [40] H. Ni’mah and E. M. Woo, "Dendritic morphology composed of stacked single crystals in poly(ethylene succinate) melt-crystallized with poly(p-vinyl phenol)," Crystal Growth & Design, vol. 14, pp. 576-584, 2013.
    [41] H. Ni’mah, E. M. Woo, and S. Nurkhamidah, "Diversification of spherulite patterns in poly(ethylene succinate) crystallized with strongly interacting poly(4-vinyl phenol)," Journal of Polymer Research, vol. 21, p. 339, 2014.
    [42] E. M. Woo, P. L. Wu, M. C. Wu, and K. C. Yan, "Thermal Behavior of Ring‐Band versus Maltese‐Cross Spherulites: Case of Monomorphic Poly(ethylene adipate)," Macromolecular Chemistry and Physics, vol. 207, pp. 2232-2243, 2006.
    [43] G. Lugito and E. M. Woo, "Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy," Colloid and Polymer Science, vol. 291, pp. 817-826, 2013.
    [44] G. Lugito and E. M. Woo, "Intertwining lamellar assembly in porous spherulites composed of two ring-banded poly(ethylene adipate) and poly(butylene adipate)," Soft matter, vol. 11, pp. 908-917, 2015.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE