簡易檢索 / 詳目顯示

研究生: 邱俊瑋
Chiu, Chun-Wei
論文名稱: 類乙醇體陰陽離子液胞的包覆/釋放與膠化行為之探討
Encapsulation/Release and Gelation Behavior of Ethosome-like Catanionic Vesicles
指導教授: 楊毓民
Yang, Yu-Min
張鑑祥
Chang, Chien-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 170
中文關鍵詞: 乙醇體類乙醇體陰陽離子液胞乙醇膽固醇水溶性高分子雙層膜固化性包覆效率釋放半衰期膠化
外文關鍵詞: ethosome, ethosome-like catanionic vesicle, ethanol, cholesterol, water-soluble polymers, vesicular membrane rigidity, encapsulation efficiency, half-release time, gelation
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以脂質與大量乙醇為主材料所形成的乙醇體(ethosome)液胞系統經研究證實可促進藥物在皮膚上的傳輸能力。本研究先以陽離子型界面活性劑(decyltrimethylammonium bromide, DeTMAB)和陰離子型界面活性劑(sodium dodecyl sulfate, SDS)等莫耳混合合成DeTMA-DS離子對雙親分子(ion pair amphiphile, IPA),並以此IPA為主材料在半自發製程下添加合適量的乙醇與膽固醇形成類乙醇體陰陽離子液胞(ethosome-like catanionic vesicle),並與脂質(PL-90)和乙醇所形成的乙醇體作比較,期待能作為經皮藥物傳輸用之載體。乙醇與膽固醇影響液胞的物理特性以粒徑、界面電位、存活期、雙層膜固化性進行有系統地分析;並利用油溶性維他命E醋酸酯(α-tocopherol acetate, α-TA)和水溶性羧基螢光素(5(6)-carboxyfluorescein, CF)作為模擬藥物評估液胞的包覆/釋放能力。此外,液胞藉由添加有/無疏水修飾的水溶性聚陽離子電解質(HMP+和P+)探討其膠化行為。
    結果顯示在一合適的乙醇濃度範圍下可生成足夠穩定的乙醇體與類乙醇體陰陽離子液胞。此外,膽固醇適量的添加可進一步提升類乙醇體陰陽離子液胞的存活期,但是不利於乙醇體的生成。另一方面,液胞雙層膜固化性(疏水性)會受到乙醇的添加些微降低,而受到膽固醇的添加明顯上升。
    在乙醇體與類乙醇體陰陽離子液胞包覆α-TA的結果上,乙醇影響藥物分布在液胞油/水區域量的不同導致包覆效率與乙醇濃度呈現一負相關趨勢。對於類乙醇體陰陽離子液胞包覆與釋放CF的結果上,乙醇濃度的增加使包覆效率與釋放半衰期分別呈現些微與明顯的下降。這些結果與乙醇影響藥物在液胞油/水區域分布量和雙層膜固化性有關。此外,含較高膽固醇量的類乙醇體陰陽離子液胞可包覆較多的α-TA與CF,並且有較長的CF釋放半衰期,顯示與雙層膜具有較高的固化性有關。
    膠化的結果發現類乙醇體陰陽離子液胞與HMP+的交互作用受到乙醇濃度與膽固醇含量的增加,分別呈現減弱與增強的趨勢。對液胞與P+的交互作用而言,則不受乙醇與膽固醇的影響。這些發現說明了液胞與高分子間的交互作用主要為疏水而不是靜電作用力主導。此外,類似的結果也在乙醇效應影響乙醇體與HMP+或P+的膠化中顯示。
    相較於乙醇體藉由乙醇調控物理穩定性、包覆/釋放與膠化行為,類乙醇體陰陽離子液胞能同時藉由乙醇與膽固醇的調控改變液胞的物理穩定性、包覆/釋放與膠化行為,因此具有更大的操作彈性於未來經皮藥物傳輸上。

    A carrier for enhanced skin delivery of drugs has ever been discovered and named ‘‘ethosomes,’’ which are phospholipid vesicular systems embodying ethanol in relatively high concentrations. In this work, we synthesized the decyltrimethylammonium-dodecylsulfate (DeTMA-DS) ion pair amphiphile (IPA) by equal molar mixing of decyltrimethylammonium bromide (DeTMAB) and sodium dodecyl sulfate solutions (SDS). Ethosome-like catanionic vesicles, which are compose of DeTMA-DS IPA, ethanol, and cholesterol, were then prepared through a semispontaneous process for possible dermal drug delivery. Ethosomes, which are composed of PL-90 lipid and ethanol, were also prepared to be a counterpart of ethosome-like catanionic vesicles. The effects of ethanol and cholesterol on the physical characteristics such as size, zeta potential, lifetime, and bilayer membrane rigidity of ethosomes and ethosome-like catanionic vesicles were systematically studied. The encapsulation/release behavior of vesicles by encapsulating hydrophobic α-tocopherol acetate (α-TA) and hydrophilic 5(6)-carboxyfluorescein (CF) and gelation of vesicles by water-souble polycations with and without hydrophobic modification (HMP+ and P+) were therefore discussed.
    The experimental results revealed that ethosomes and ethosome-like catanionic vesicles with an optimized amount of ethanol could result in a reasonable lifetime. Furthermore, although inclusion of cholesterol in bilayers could not form stable ethosomes, it further enhanced lifetime of the ethosome-like catanionic vesicles. On the other hand, while the vesicular membrane rigidity (hydrophobicity) was slightly deteriorated by ethanol, it was greatly enhanced by cholesterol.
    For the α-TA encapsulation of ethosomes and ethosome-like catanionic vesicles, the results indicated that the ethanol effect on the partition of the α-TA between vesicular bilayer and core regions led to negative relations between ethanol concentration and encapsulation efficiency. As for the CF encapsulation and release of ethosome-like catanionic vesicles, the encapsulation efficiency and half-release time, respectively, slightly and significantly decrease with the increasing ethanol concentration. These findings are due to the effects of ethanol on the partition of the CF between vesicular bilayer and core regions and vesicular membrane hydrophobicity. On the other hand, more rigid and hydrophobic catanionic vesicular membranes caused by the addition of cholesterol would encapsulate more α-TA and CF drugs and further prolong the half-release time of CF.
    For the gelation results of the ethosome-like catanionic vesicle/polymer mixtures, the interaction between vesicle and polymer HMP+ decreases and increases with the increasing ethanol concentration and cholesterol content, respectively. Both ethanol concentration and cholesterol content, however, showed little effects on the interaction between vesicle and polymer P+. These findings lead to the conclusion that the gelation of ethosome-like catanionic vesicles by polymer molecules is driven by the hydrophobic more than the electrostatic interactions. In addition, similar conclusion was also found for the ethanol effects on the gelation of ethosomes by HMP+ and P+.
    The lifetime, vesicular membrane rigidity, encapsulation/release, and gelation of ethosome-like catanionic vesicles can be well tailored by ethanol and cholesterol in comparison with those of ethosomes, in which were only tailored by ethanol. This fact may have a potential in developing new formulations for dermal drug delivery.

    摘要………………………………………………………………...………….I Abstract………………………………………………………..…………….III 誌謝………………………………………..…………………..…...………. VI 總目錄…………………………………………………………...…………VII 表目錄………………………………………………………...……………...X 圖目錄………………………………………………………...……………..XI 符號說明…………………………………………………...…...……….....XX 縮寫說明…………………………………………………..……………...XXII 第一章 緒論……………………………………………………………….…1 1-1 前言……………………………………………………………………1 1-2研究動機與目的……………………………………………………….4 第二章 文獻回顧………………………………………………...…………10 2-1 陰陽離子液胞的形成………………………………………………..10 2-2 乙醇體與類乙醇體陰陽離子液胞…………………………………..15 2-3 液胞的物理穩定性…………………………………………………..16 2-4 液胞的雙層膜特性…………………………………………………..18 2-5 液胞的包覆/釋放行為………………………..……………………...26 2-6 液胞的膠化行為……...…………………………….………………..30 第三章 實驗部份…………………………………………….……………..32 3-1 實驗藥品……………………………………………………………..33 3-2 實驗儀器及裝置……………………………………………………..38 3-2-1 均質機………………………………………………..………..38 3-2-2 動態雷射光散射儀/界面電位儀……………….……………..38 3-2-3 穿透式電子顯微鏡……………………………………………40 3-2-4多功能微量盤式光譜儀………………………….……………41 3-2-5 凝膠層析管……………………………………………………42 3-2-6 高效液相層析儀………………………………………………42 3-2-7 螢光光譜儀……………………………………………………43 3-2-8 轉桿試管混合器………………………………………………43 3-2-9 動態流變儀……………………………………………………44 3-2-10 其它設備……………………………………..………………46 3-3 實驗方法……………………………………………….……………47 3-3-1 離子對雙親分子(ion pair amphiphile)的製備…………..……46 3-3-2 乙醇體與類乙醇體陰陽離子液胞的製備……………………48 3-3-3 粒徑分布、界面電位與液胞存活期的測量…………………49 3-3-4 穿透式電子顯微鏡的分析…………...……………………….52 3-3-5 液胞雙層膜固化性的分析……………………………………52 3-3-6 液胞包覆油溶性藥物維他命E醋酸酯(α-TA)實驗……….…53 3-3-7 液胞包覆與釋放水溶性藥物羧基螢光素(CF)實驗……….…55 3-3-8 液胞與高分子混合物的製備………………………..………..59 3-3-9 液胞與高分子混合物相圖的建立………………….………...59 3-3-10 液胞與高分子混合物黏度與流變性質的分析…….……….60 第四章 結果與討論………………………………………….……………..64 4-1 液胞之物理特性分析……………………………….……….………64 4-1-1液胞的粒徑、粒徑分布指數(PDI)與界面電位特性…………..68 4-1-2 液胞的存活期…………………………………..…………..…72 4-1-3 液胞的表面型態………………………………..…………..…75 4-1-4 液胞的雙層膜固化性…………………………….………...…77 4-2 液胞之藥物包覆與釋放特性……………………..…….….……..…81 4-2-1 油溶性藥物的包覆行為…………………….………...………81 4-2-2 水溶性藥物的包覆與釋放行為…………….……...…………88 4-3 液胞與水溶性高分子的膠化行為……………….….…..…………101 4-3-1 高分子的構形……………………………………..…………101 4-3-2 乙醇體與水溶性高分子的膠化行為………………..………105 4-3-3 類乙醇體陰陽離子液胞與水溶性高分子的膠化行為……..115 第五章 結論與建議………………………………………….…………..125 5-1 結論…………………………………………..………………..……125 5-2 建議…………………………………………..………..……………128 參考文獻…………………………………………………………...………130 附錄………………………………………………………………...………154 個人著作……………………………………..…………………….………168 自述……………………………………..………………………....…….…170

    [1] A. Jesorka, O. Orwar, Liposomes: technologies and analytical applications, Annu. Rev. Anal. Chem., 1, 801-832, 2008.
    [2] T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream, Science, 303, 1818-1822, 2004.
    [3] Q.T. Liu, B.J. Boyd, Liposomes in biosensors, Analyst, 138, 391-409, 2013.
    [4] M.M.A. Elsayed, O.Y. Abdallah, V.F. Naggar, N.M. Khalafallah, Lipid vesicles for skin delivery of drugs: reviewing three decades of research, Int. J. Pharm., 332, 1-16, 2007.
    [5] Y.C. Chung, S.L. Regen, Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants, Langmuir, 9, 1937-1939, 1993.
    [6] M.J. Blandamer, B. Briggs, P.M. Cullis, J. Engberts, Gel to liquid-crystal transitions in synthetic amphiphile vesicles, Chem. Soc. Rev., 24, 251-257, 1995.
    [7] S. Bhattacharya, S. Haldar, Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage, Biochim. Biophys. Acta 1467, 39-53, 2000.
    [8] E.W. Kaler, A.K. Murthy, B.E. Rodriguez, J.A. Zasadzinski, Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, Science, 245, 1371-1374, 1989.
    [9] C. Tondre, C. Caillet, Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis, Adv. Colloid Interface Sci., 93, 115-134, 2001.
    [10] E.F. Marques, O. Regev, A. Khan, B. Lindman, Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects, Adv. Colloid Interface Sci., 100-102, 83-104, 2003.
    [11] C.L. Chien, S.J. Yeh, Y.M. Yang, C.H. Chang, J.R. Maa, Formation and encapsulation of catanionic vesicles, J. Chin. Colloid Interface Soc., 24, 31-45, 2002.
    [12] S.J. Yeh, Y.M. Yang, C.H. Chang, Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles, Langmuir, 21, 6179-6184, 2005.
    [13] E. Soussan, S. Cassel, M. Blanzat, I. Rico-Lattes, Drug delivery by soft matter: matrix and vesicular carriers, Angew. Chem. Int. Edit., 48, 274-288, 2009.
    [14] H. Fukuda , K. Kawata, H. Okuda, S.L. Regen, Bilayer-forming ion-pair amphiphiles from single-chain surfactants, J. Am. Chem. Soc., 112, 1635-1637, 1990.
    [15] M.H. Chung, Y.C. Chung, Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers, Colloids Surfaces B, 24, 111-121, 2002.
    [16] W.T. Li, Y.M. Yang, C.H. Chang, Langmuir monolayer behavior of an ion pair amphiphile with a double-tailed cationic surfactant, Colloids Surfaces B, 66, 187-194, 2008.
    [17] K.C. Wu, Z.L. Huang, Y.M. Yang, C.H. Chang, T.H. Chou, Enhancement of catansome formation by means of cosolvent effect: semi-spontaneous preparation method, Colloids Surfaces A, 302, 599-607, 2007.
    [18] Y.M. Yang, K.C. Wu, Z.L. Huang, C.H. Chang, On the stability of liposomes and catansomes in aqueous alcohol solutions, Langmuir, 24, 1695-1700, 2008.
    [19] Z.L. Huang, J.Y. Hong, C.H. Chang, Y.M. Yang, Gelation of charged catanionic vesicles prepared by a semispontaneous process, Langmuir, 26, 2374-2382, 2010.
    [20] G. Cevc, G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochim. Biophys. Acta, 1104, 226-232, 1992.
    [21] E. Touitou, N. Dayan, L. Bergelson, B. Godin, M. Eliaz, Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties, J. Controlled Release, 65, 403-418, 2000.
    [22] S.L. Krill, K. Knutson, W.I. Higuchi, Ethanol effects on the stratum-corneum lipid phase-behavior, Biochim. Biophys. Acta, 1112, 273-280, 1992.
    [23] K.A. Walters, Dermatological and transdermal formulations, MARCEL DEKKER, INC., New York, 2002.
    [24] M.M.A. Elsayed, O.Y. Abdallah, V.F. Naggar, N.M. Khalafallah, Deformable liposomes and ethosomes: mechanism of enhanced skin delivery, Int. J. Pharm., 322, 60-66, 2006.
    [25] O.A. Ogunsola, M.E. Kraeling, S. Zhong, D.J. Pochan, R.L. Bronaugh, S.R. Raghavan, Structural analysis of "flexible" liposome formulations: new insights into the skin-penetrating ability of soft nanostructures, Soft Matter, 8, 10226-10232, 2012.
    [26] N. Dayan, E. Touitou, Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes, Biomaterials, 21, 1879-1885, 2000.
    [27] D. Paolino, G. Lucania, D. Mardente, F. Alhaique, M. Fresta, Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers, J. Controlled Release, 106, 99-110, 2005.
    [28] V. Dubey, D. Mishra, N.K. Jain, Melatonin loaded ethanolic liposomes: Physicochemical characterization and enhanced transdermal delivery, Eur. J. Pharm. Sci., 67, 398-405, 2007.
    [29] Z. Zhang, Y. Wo, Y.X. Zhang, D.R. Wang, R. He, H.J. Chen, D.X. Cui, In vitro study of ethosome penetration in human skin and hypertrophic scar tissue, Nanomed.-Nanotechnol. Biol. Med., 8, 1026-1033, 2012.
    [30] V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145-160, 2005.
    [31] G. Cevc, Lipid vesicles and other colloids as drug carriers on the skin, Adv. Drug Deliv. Rev., 56, 675-711, 2004.
    [32] M.V. Gele, B. Geusens, L. Brochez, R. Speeckaert, J. Lambert, Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations, Expert Opin. Drug Deliv., 8, 705-719, 2011.
    [33] J.N. Israelachvili, Intermolecular and surface forces, 3rd ed., Elsevier Inc., USA, 2011.
    [34] J.B. Huang, G.X. Zhao, Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant, Colloid Polym. Sci., 273, 156-164, 1995.
    [35] J.B. Huang, B.Y. Zhu, G.X. Zhao, Z.Y. Zhang, Vesicle formation of a 1:1 catanionic surfactant mixture in ethanol solution, Langmuir, 13, 5759-5761, 1997.
    [36] J.B. Huang, B.Y. Zhu, M. Mao, P. He, J. Wang, X. He, Vesicle formation of 1 : 1 cationic and anionic surfactant mixtures in nonaqueous polar solvents, Colloid Polym. Sci., 277, 354-360, 1999.
    [37] X.R. Zhang, J.B. Huang, M. Mao, S.H. Tang, B.Y. Zhu, From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents, Colloid Polym. Sci., 279, 1245-1249, 2001.
    [38] C.Z. Wang, S.H. Tang, J.B. Huang, X.R. Zhang, H.L. Fu, Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems, Colloid Polym. Sci., 280, 770-774, 2002.
    [39] R. Ramsch, S. Cassel, I. Rico-Lattes, Impact of solvent physical parameters on the aggregation process of catanionic amphiphiles, Langmuir, 25, 6733-6738, 2009.
    [40] N. Sarma, J.M. Borah, S. Mahiuddin, H.A.R. Gazi, B. Guchhait, R. Biswas, Influence of chain length of alcohols on Stokes' shift dynamics in catanionic vesicles, J. Phys. Chem. B, 115, 9040-9049, 2011.
    [41] W.Y. Yu, Y.M. Yang, C.H. Chang, Cosolvent effects on the spontaneous formation of vesicles from 1 : 1 anionic and cationic surfactant mixtures, Langmuir, 21, 6185-6193, 2005.
    [42] 柯政遠, 乙醇體及陰陽體的製備及其包覆/釋放行為之探討, 國立成功大學化學工程學系碩士論文, 2008..
    [43] 劉育姍, 陰陽離子液胞包覆維他命E醋酸酯之行為探討, 國立成功大學化學工程學系碩士論文, 2011.
    [44] 邱文昱, 陰陽離子液胞包覆油/水溶性藥物之行為探討, 國立成功大學化學工程學系碩士論文, 2012.
    [45] 溫智芳, 經皮藥物傳輸用類乙醇體陰陽離子液胞之研發, 國立成功大學化學工程學系碩士論文, 2013.
    [46] 葉如萍, 類乙醇體陰陽離子液胞的雙層膜特性與其包覆/釋放行為的關聯, 國立成功大學化學工程學系碩士論文, 2013.
    [47] A. McLaughlin, W.K. Eng, G. Vaio, T. Wilson, S. McLaughlin, Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes, J. Membr. Biol., 76, 183-193, 1983.
    [48] E. Evans, D. Needham, Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions, J. Phys. Chem., 91, 4219-4228, 1987.
    [49] L. Toppozini, C.L. Armstrong, M.A. Barrett, S.B. Zheng, L. Luo, H. Nanda, V.G. Sakai, M.C. Rheinstadter, Partitioning of ethanol into lipid membranes and its effect on fluidity and permeability as seen by X-ray and neutron scattering, Soft Matter, 8, 11839-11849, 2012.
    [50] J.A. Barry, K. Gawrisch, Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers, Biochemistry, 33, 8082-8088, 1994.
    [51] E.S. Rowe, T.A. Cutrear, Differential scanning calorimetric studies of ethanol interactions with distearoylphosphatidylcholine: transition to the interdigitated phase, Biochemistry, 29, 10398-10404, 1990.
    [52] H. Komatsu, E.S. Rowe, Effect of Cholesterol on the Ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine, Biochemistry, 30, 2463-2470, 1991.
    [53] L.G. Roth, C.H. Chen, Thermodynamic elucidation of ethanol-induced interdigitation of hydrocarbon chains in phosphatidylcholine bilayer vesicles, J. Phys Chem., 95, 7955-7959, 1991.
    [54] S.J. Slater, C. Ho, F.J. Taddeo, M.B. Kelly, C.D. Stubbs, Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order - effects of cholesterol, increased phospholipid unsaturation, and ethanol, Biochemistry, 32, 3714-3721, 1993.
    [55] J.W. Zeng, K.E. Smith, P.L.G. Chong, Effects of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine vesicles, Biophys. J., 65, 1404-1414, 1993.
    [56] S.S. Li, H.N. Lin, G.Q. Wang, C. Huang, Effects of alcohols on the phase transition temperatures of mixed-chain phosphatidylcholines, Biophys. J., 70, 2784-2794, 1996.
    [57] C. Huang, T.J. McIntosh, Probing the ethanol-induced chain interdigitations in gel-state bilayers of mixed-chain phosphatidylcholines, Biophys. J., 72, 2702-2709, 1997.
    [58] E.B. Wachtel, N. Bach, D. Miller, I. R., The effect of ethanol on the structure of phosphatidylserine bilayers, Chem. Phys. Lipids, 92, 127-137, 1998.
    [59] T.J. McIntosh, H.N. Lin, S.S. Li, C.H. Huang, The effect of ethanol on the phase transition temperature and the phase structure of monounsaturated phosphatidylcholines, Biochim. Biophys. Acta, 1510, 219-230, 2001.
    [60] D. Bach, N. Borochov, E. Wachtel, Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine-cholesterol bilayer membranes, Chem. Phys. Lipids, 114, 123-130, 2002.
    [61] M. Apel-Paz, G. Doncel, T. Vanderlick, Impact of membrane cholesterol content on the resistance of vesicles to surfactant attack, Langmuir, 21, 9843-9849, 2005.
    [62] S. Bhattacharya, S. Haldar, The effects of cholesterol inclusion on the vesicular membranes of cationic lipids, Biochim. Biophys. Acta, 1283, 21-30, 1996.
    [63] T.P.W. McMullen, R.N.A.H. Lewis, R.N. McElhaney, Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes, Biophys. J., 79, 2056-2065, 2000.
    [64] C. Bernsdorff, R. Winter, Differential properties of the sterols cholesterol, ergosterol, beta-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order, J. Phys. Chem. B, 107, 10658-10664, 2003.
    [65] K.K. Halling, J.P. Slotte, Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization, Biochim. Biophys. Acta, 1664, 161-171, 2004.
    [66] D.A. Mannock, R.N.A.H. Lewis, R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biophys. J., 91, 3327-3340, 2006.
    [67] C. Demetzos, Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability, J. Liposome Res., 18, 159-173, 2008.
    [68] I. Fournier, J.B. Arwicz, M. Auger, P. Tancrede, The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study, Chem. Phys. Lipids, 151, 41-50, 2008.
    [69] T.P.W. McMullen, R. Lewis, R.N. McElhaney, Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes, Biochim. Biophys. Acta, 1788, 345-357, 2009.
    [70] D.A. Mannock, R.N.A.H. Lewis, R.N. McElhaney, A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biochim. Biophys. Acta, 1798, 376-388, 2010.
    [71] D.A. Mannock, R.N.A.H. Lewis, T.P.W. McMullen, R.N. McElhaney, The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes, Chem. Phys. Lipids, 163, 403-448, 2010.
    [72] W.K. Subczynski, A. Wisniewska, J.J. Yin, J.S. Hyde, A. Kusumi, Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol, Biochemistry, 33, 7670-7681, 1994.
    [73] L. Mainali, M. Raguz, W.K. Subczynski, Phases and domains in sphingomyelin-cholesterol membranes: structure and properties using EPR spin-labeling methods, Eur. Biophys. J. Biophy., 41, 147-159, 2012.
    [74] K.J. Tierney, D.E. Block, M.L. Longo, Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol, Biophys. J., 89, 2481-2493, 2005.
    [75] M. Patra, E. Salonen, E. Terama, I. Vattulainen, R. Faller, B.W. Lee, J. Holopainen, M. Karttunen, Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers, Biophys. J., 90, 1121-1135, 2006.
    [76] F.S. de Meyer, B., Effect of cholesterol on the structure of a phospholipid bilayer, Proc. Natl. Acad. Sci. USA, 106, 3654-3658, 2009.
    [77] W.R. Hargreaves, D.W. Deamer, Liposomes from ionic, single-chain amphiphiles, Biochemistry, 17, 3759-3768, 1978.
    [78] G.X. Zhao, W.L. Yu, Vesicles from mixed sodium 10-undecenoatedecytrimethylammonium bromide solution, J. Colloid Interface Sci., 173, 159-164, 1995.
    [79] Y.U. Kondo, H. Yoshino, N. Nishiyama, K. Abe, M., Spontaneous vesicle formation from aqueous-solutions of didodecyldimethylammonium bromide and sodium dodecyl-sulfate mixtures, Langmuir, 11, 2380-2384, 1995.
    [80] H.M. Sakai, A. Yokoyama, S. Saji, T. Abe, M., Photochemical switching of vesicle formation using an azobenzene-modified surfactant, J. Phys Chem. B, 103, 10737-10740, 1999.
    [81] C. Caillet, M. Hebrant, C. Tondre, Sodium octyl sulfate/cetyltrimethylammonium bromide catanionic vesicles: aggregate composition and probe encapsulation, Langmuir, 16, 9099-9102, 2000.
    [82] A.H. Fischer, M. Tondre, C., Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system, J. Colloid Interface Sci., 248, 163-168, 2002.
    [83] H. Imamura, K. Tsuchiya, Y. Kondo, N. Yoshino, T. Ohkuba, H. Sakai, M. Abe, Phase behavior of mixed solutions of a catanionic surfactant with a ferrocenyl group and an anionic surfactant: surface chemical and electrochemical approaches, J. Oleo Sci., 54, 125-134, 2005.
    [84] X. Wang, E.J. Danoff, N.A. Sinkov, J.H. Lee, S.R. Raghavan, D.S. English, Highly efficient capture and long-term encapsulation of dye by catanionic surfactant vesicles, Langmuir, 22, 6461-6464, 2006.
    [85] E.J.W. Danoff, X. Wang, S.H. Tung, N.A. Sinkov, A.M. Kemme, S.R. Raghavan, D.S. English, Surfactant vesicles for high-efficiency capture and separation of charged organic solutes, Langmuir, 23, 8965-8971, 2007.
    [86] E.M. Soussan, C. Mille, M. Blanzat, P. Bordat, I. Rico-Lattes, Sugar-derived tricatenar catanionic surfactant: synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles, Langmuir, 24, 2326-2330, 2008.
    [87] D. Kopetzki, Y. Michina, T. Gustavsson, D. Carriere, Fatty acid-cationic surfactant vesicles: counter-ion self-encapsulation, Soft Matter, 5, 4212-4218, 2009.
    [88] F. Caschera, J. B. de la Serna, P.M.G. Loffler, T.E. Rasmussen, M.M. Hanczyc, L.A. Bagatolli, P.A. Monnard, Stable vesicles composed of monocarboxylic or dicarboxylic fatty acids and trimethylammonium amphiphiles, Langmuir, 27, 14078-14090, 2011.
    [89] Y.C. Chung, S.L. Regen, H. Fukuda, K. Hirano, Comparision of barrier properties of bilayers derived from an ion-paired amphiphile with those of a phosphatidylcholine analog, Langmuir, 8, 2843-2845, 1992.
    [90] S. Bhattacharya, S. De, M. Subramanian, Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design, J. Org. Chem., 63, 7640-7651, 1998.
    [91] Y.C. Chung, H.J. Lee, J.Y. Park, Bilayer properties of the multiple-chain ion pair amphiphiles, Bull. Kor. Chem. Soc., 19, 1249-1252, 1998.
    [92] Y.C. Chung, H.J. Lee, Ion-sensing property of an ion pair amphiphile, Bull. Korean Chem. Soc., 20, 16-18, 1999.
    [93] 徐立銘, 陰陽離子液胞包覆行為之探討, 國立成功大學化學工程學系碩士論文, 2002.
    [94] 李雅鈺, 含膽固醇之陰陽離子液胞穩定性及包覆行為的研究, 國立成功大學化學工程學系碩士論文, 2004.
    [95] T. Namani, D.W. Deamer, Stability of model membranes in extreme environments, Orig. Life Evol. Biosph., 38, 329-341, 2008.
    [96] Y. Rao, F. Zheng, X. Zhang, J. Gao, W. Liang, In vitro percutaneous permeation and skin accumulation of finasteride using vesicular ethosomal carriers, AAPS PharmSciTech, 9, 860-865, 2008.
    [97] Y. Zhou, Y.H. Wei, G.Q. Zhang, X.A. Wu, Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir, Arch. Pharm. Res., 33, 567-574, 2010.
    [98] G.L. Li, Y.T. Fan, C. Fan, X.R. Li, X.N. Wang, M. Li, Y. Liu, Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation, Eur. J. Pharm. Biopharm., 82, 49-57, 2012.
    [99] M.K. Bhalaria, S. Naik, A.N. Misra, Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases, Indian J. Exp. Biol., 47, 368-375, 2009.
    [100] A.K. Garg, L.M. Negi, M. Chauhan, Gel containing ethosomal vesicles for transdermal delivery of aceclofenac, Int. J. Pharm. Pharm. Sci. , 2, 102-108, 2010.
    [101] E.R. Bendas, M.I. Tadros, Enhanced transdermal delivery of salbutamol sulfate via ethosomes, AAPS PharmSciTech, 8, E1-E8, 2007.
    [102] C. Celia, F. Cilurzo, E. Trapasso, D. Cosco, M. Fresta, D. Paolino, Ethosomes and transfersomes containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders, Biomed. Microdevices, 14, 119-130, 2012.
    [103] H. Komatsu, S. Okada, Increased permeability of phase-separated liposomal membranes with mixtures of ethanol-induced interdigitated and non-interdigitated structures, Biochim. Biophys. Acta, 1237, 169-175, 1995.
    [104] S.B. Kulkarni, G.V. Betageri, M. Singh, Factors affecting microencapsulation of drugs in liposomes, J. Microencapsulation, 12, 229-246, 1995.
    [105] A.D. Sezer, A.L. Bas, J. Akbuga, Encapsulation of enrofloxacin in liposomes I: preparation and in vitro characterization of LUV, J. Liposome Res., 14, 77-86, 2004.
    [106] J.M. Lopez-Pinto, M.L. Gonzalez-Rodriguez, A.M. Rabasco, Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes, Int. J. Pharm., 298, 1-12, 2005.
    [107] A.D. Sezer, J. Akbuga, A.L. Bas, In vitro evaluation of enrofloxacin-loaded MLV liposomes, Drug Delivery, 14, 47-53, 2007.
    [108] M.S. El-Samaligy, N.N. Afifi, E.A. Mahmoud, Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation, Int. J. Pharm., 308, 140-148, 2006.
    [109] M.A. El-Nabarawi, E.R. Bendas, R.T.A. El Rehem, M.Y.S. Abary, Transdermal drug delivery of paroxetine through lipid- vesicular formulation to augment its bioavailability, Int. J. Pharm., 443, 307-317, 2013.
    [110] J.A. Zhang, G. Anyarambhatla, L. Ma, S. Ugwu, T. Xuan, T. Sardone, I. Ahmad, Development and characterization of a novel Cremophor (R) EL free liposome-based paclitaxel (LEP-ETU) formulation, Eur. J. Pharm. Biopharm., 59, 177-187, 2005.
    [111] A. Deniz, A. Sade, F. Severcan, D. Keskin, A. Tezcaner, S. Banerjee, Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics, Bioscience Rep., 30, 365-373, 2010.
    [112] G.V. Betageri, Liposomal encapsulation and stability of dideoxyinosine triphosphate, Drug Dev. Ind. Pharm., 19, 531-539, 1993.
    [113] M. Alexander, A.A. Lopez, Y. Fang, M. Corredig, Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability, LWT - Food Sci. Technol., 47, 427-436, 2012.
    [114] O.A. Sammour, M.A. Mahdy, H.M. Elnahas, A.A. Mowafy, Liposomal gel as ocular delivery system for diclofenac sodium: in-vitro and in-vivo studies, Int. J. Pharm. Sci. Res., 4, 215-224, 2013.
    [115] M.M. Ibrahim, S.A.H. Tawfique, M.M. Mahdy, Liposomal diltiazem HCl as ocular drug delivery system for glaucoma, Drug Dev. Ind. Pharm., 2013.
    [116] M. Cocera, O. Lopez, L. Coderch, J. Parra, A. de la Maza, Permeability investigations of phospholipid liposomes by adding cholesterol, Colloids Surfaces A, 221, 9-17, 2003.
    [117] M.Y. Begum, M.R. Shaik, K. Abbulu, M. Sudhakar, Ketorolac tromethamine loaded liposomes of long alkyl chain lipids: development, characterization and in vitro performance, Int. J. PharmTech Res., 4, 218-225, 2012.
    [118] K. Iga, N. Hamaguchi, Y. Igari, Y. Ogawa, H. Toguchi, T. Shimamoto, Heat-specific drug release of large unilamellar vesicle as hyperthermia-mediated targeting delivery, Int. J. Pharm., 57, 241-251, 1989.
    [119] M. Yamauchi, K. Tsutsumi, M. Abe, Y. Uosaki, M. Nakakura, N. Aoki, Release of drugs from liposomes varies with particle size, Biol. Pharm. Bull., 30, 963-966, 2007.
    [120] B. Lohse, P.Y. Bolinger, D. Stamou, Encapsulation efficiency measured on single small unilamellar vesicles, J. Am. Chem. Soc., 130, 14372-14373, 2008.
    [121] X.M. Xu, M.A. Khan, D.J. Burgess, A quality by design (QbD) case study on liposomes containing hydrophilic API: I. formulation, processing design and risk assessment, Int. J. Pharm., 419, 52-59, 2011.
    [122] B. Maherani, E. Arab-Tehrany, A. Kheirolomoom, V. Reshetov, M.J. Stebe, M. Linder, Optimization and characterization of liposome formulation by mixture design, Analyst, 137, 773-786, 2012.
    [123] A.R. Mohammed, N. Weston, A.G.A. Coombes, M. Fitzgerald, Y. Perrie, Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability, Int. J. Pharm., 285, 23-34, 2004.
    [124] S.C. Lee, K.E. Lee, J.J. Kim, S.H. Lim, The effect of cholesterol in the liposome bilayer on the stabilization of incorporated retinol, J. Liposome Res., 15, 157-166, 2005.
    [125] A.A. Yaroslavov, E.G. Yaroslavova, A.A. Rakhnyanskaya, F.M. Menger, V.A. Kabanov, Modulation of interaction of polycations with negative unilamellar lipid vesicles, Colloid Surface B, 16, 29-43, 1999.
    [126] K. Kawakami, Y. Nishihara, K. Hirano, Effect of hydrophilic polymers on physical stability of liposome dispersions, J. Phys Chem. B, 105, 2374-2385, 2001.
    [127] M.A. Yessine, J.C. Leroux, Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules, Adv. Drug Deliv. Rev., 56, 999-1021, 2004.
    [128] A. Mecke, I.J. Majoros, A.K. Patri, J.R. Baker, M.M.B. Holl, B.G. Orr, Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group, Langmuir, 21, 10348-10354, 2005.
    [129] A.A. Yaroslavov, N.S. Melik-Nubarov, F.M. Menger, Polymer-induced flip-flop in biomembranes, Accounts Chem. Res., 39, 702-710, 2006.
    [130] C. Tribet, F. Vial, Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes, Soft Matter, 4, 68-81, 2008.
    [131] S. Mourtas, S. Fotopoulou, S. Duraj, V. Sfika, C. Tsakiroglou, S.G. Antimisiaris, Liposomal drugs dispersed in hydrogels - effect of liposome, drug and gel properties on drug release kinetics, Colloids Surfaces B, 55, 212-221, 2007.
    [132] S. Mourtas, M. Haikou, M. Theodoropoulou, C. Tsakiroglou, S.G. Antimisiaris, The effect of added liposomes on the rheological properties of a hydrogel: A systematic study, J. Colloid Interface Sci., 317, 611-619, 2008.
    [133] Y.Y. Chieng, S.B. Chen, Rheological study of hydrophobically modified hydroxyethyl cellulose and phospholipid vesicles, J. Colloid Interface Sci., 349, 236-245, 2010.
    [134] M. Lodzki, B. Godin, L. Rakou, R. Mechoulam, R. Gallily, E. Touitou, Cannabidiol - transdermal delivery and anti-inflammatory effect in a murine model, J. Controlled Release, 93, 377-387, 2003.
    [135] D. Ainbinder, E. Touitou, Testosterone ethosomes for enhanced transdermal delivery, Drug Delivery, 12, 297-303, 2005.
    [136] F. Maestrelli, G. Capasso, M.L. Gonzalez-Rodriguez, A.M. Rabasco, C. Ghelardini, P. Mura, Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes, J. Liposome Res., 19, 253-260, 2009.
    [137] M. Shumilov, E. Touitou, Buspirone transdermal administration for menopausal syndromes, in vitro and in animal model studies, Int. J. Pharm., 387, 26-33, 2010.
    [138] N. Akhtar, K. Pathak, Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: development and comparison with ethosomal gel, AAPS PharmSciTech, 13, 344-355, 2012.
    [139] O. Regev, E.F. Marques, A. Khan, Polymer-induced structural effects on catanionic vesicles: formation of faceted vesicles, disks, and cross-links, Langmuir, 15, 642-645, 1999.
    [140] E.F. Marques, O. Regev, A. Khan, M.D. Miguel, B. Lindman, Interactions between catanionic vesicles and oppositely charged poly electrolytes-phase behavior and phase structure, Macromolecules, 32, 6626-6637, 1999.
    [141] H. Ashbaugh, K. Boon, R. Prud'homme, Gelation of "catanionic" vesicles by hydrophobically modified polyelectrolytes, Colloid Polym. Sci., 280, 783-788, 2002.
    [142] F.E. Antunes, E.F. Marques, R. Gomes, K. Thuresson, B. Lindman, M.G. Miguel, Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification, Langmuir, 20, 4647-4656, 2004.
    [143] J.H. Lee, J.P. Gustin, T.H. Chen, G.F. Payne, S.R. Raghavan, Vesicle-biopolymer gels: networks of surfactant vesicles connected by associating biopolymers, Langmuir, 21, 26-33, 2005.
    [144] B. Medronho, F.E. Antunes, B. Lindman, M.G. Miguel, Gels of catanionic vesicles and hydrophobically modified poly(ethylene glycol), J. Disper. Sci. Technol., 27, 83-90, 2006.
    [145] F.E. Antunes, R.O. Brito, E.F. Marques, B. Lindman, M. Miguel, Mechanisms behind the faceting of catanionic vesicles by polycations: chain crystallization and segregation, J. Phys Chem. B, 111, 116-123, 2007.
    [146] F.E. Antunes, E.F. Marques, M.G. Miguel, B. Lindman, Polymer-vesicle association, Adv. Colloid Interface Sci., 147-48, 18-35, 2009.
    [147] C.C. Lin, C.H. Chang, Y.M. Yang, Gelation of spontaneously formed catanionic vesicles by water soluble polymers, Colloids Surfaces A, 346, 66-74, 2009.
    [148] N. Dew, K. Edwards, K. Edsman, Gel formation in systems composed of drug containing catanionic vesicles and oppositely charged hydrophobically modified polymer, Colloids Surfaces B, 70, 187-197, 2009.
    [149] N. Dew, K. Edwards, J. Eriksson, K. Edsman, E. Bjork, Gel formulations containing catanionic vesicles composed of alprenolol and SDS: Effects of drug release and skin penetration on aggregate structure, Colloids Surfaces B, 89, 53-60, 2012.
    [150] K. Thuresson, S. Nilsson, B. Lindman, Effect of hydrophobic modification on phase behavior and rheology in mixtures of oppositely charged polyelectrolytes, Langmuir, 12, 530-537, 1996.
    [151] R.R.C. New, Liposomes: a pratical approach, Oxford, New York, 1990.
    [152] B.R. Lentz, Membrane fluidity as detected by diphenylhexatriene probes, Chem. Phys. Lipids, 50, 171-190, 1989.
    [153] B.R. Lentz, Use of fluorescent probes to monitor molecular order and motions within liposome bilayers, Chem. Phys. Lipids, 64, 99-116, 1993.
    [154] R.G. Larson, The structure and rheology of complex fluids, Oxford University Press, 1998.
    [155] A.M. Grillet, N.B. Wyatt, L.M. Gloe, Polymer gel rheology and adhesion, InTech, Croatia, 2012.
    [156] J.D. Ferry, Viscoelastic properties of polymers, 3 ed., John Wiley & Sons, New York, 1980.
    [157] Y.S. Liu, C.F. Wen, Y.M. Yang, Development of ethosome-like catanionic vesicles for dermal drug delivery, J. Taiwan Inst. Chem. Engrs., 43, 830-838, 2012.
    [158] M. Arshad, F. Anjum, A. Asghar, M. Khan, M. Yasin, M. Shahid, A. El-Ghorab, Lipid stability and antioxidant profile of microsomal fraction of broiler meat enriched with alpha-lipoic acid and alpha-tocopherol acetate, J. Agr. Food Chem., 59, 7346-7352, 2011.
    [159] E. Touitou, B. Godin, New approaches for UV-induced photodamage protection, J. Applied Cosmetology, 24, 139-147, 2006.
    [160] E. Touitou, B. Godin, Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations, Clin. Dermatol., 26, 375-379, 2008.
    [161] J. Atkinson, R.F. Epand, R.M. Epand, Tocopherols and tocotrienols in membranes: a critical review, Free Radic. Biol. Med., 44, 739-764, 2008.
    [162] M. Gonnet, L. Lethuaut, F. Boury, New trends in encapsulation of liposoluble vitamins, J. Controlled Release, 146, 276-290, 2010.
    [163] J.N. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal, W.A. Hagins, Liposome-cell interaction - transfer and intracellular release of a trapped fluorescent marker, Science, 195, 489-492, 1977.
    [164] S. Jain, A.K. Tiwary, B. Sapra, N.K. Jain, Formulation and evaluation of ethosomes for transdermal delivery of lamivudine, AAPS PharmSciTech, 8, E1-E9, 2007.
    [165] V.V. Kumar, Complementary molecular shapes and additivity of the packing parameter of lipids, Proc. Natl. Acad. Sci. USA, 88, 444-448, 1991.
    [166] M.D. Dubbs, R.B. Gupta, Solubility of vitamin E (alpha-tocopherol) and vitamin K-3 (menadione) in ethanol-water mixture, J. Chem. Eng. Data, 43, 590-591, 1998.
    [167] M. Hara, Polyelectrolytes: science and technology, Marcel Dekker, New York, 1993.
    [168] H. Zhou, Y.J. Mei, H. Wang, L. Xie, Rheological properties of hydrophobically modified poly(acrylic acid) in mixed solutions, J. Solut. Chem., 39, 1243-1252, 2010.
    [169] S. Dragan, L. Ghimici, Viscometric behaviour of some hydrophobically modified cationic polyelectrolytes, Polymer, 42, 2887-2891, 2001.
    [170] Z.W. Wicks, F.N. Jones, S.P. Pappas, D.A. Wicks, Organic coatings-science and technology, 3 ed., John Wiley & Sons, Inc., New Jersey, 2007.
    [171] A.A. Abdala, K. Olesen, S.A. Khan, Solution rheology of hydrophobically modified associative polymers: solvent quality and hydrophobic interactions, J. Rheology, 47, 497-511, 2003.
    [172] P. Jenkins, M. Snowden, Depletion flocculation in colloidal dispersions, Adv. Colloid Interface Sci., 68, 57-96, 1996.
    [173] R.I. Feigin, D.H. Napper, Depletion stabilization and depletion flocculation, J. Colloid Interface Sci., 75, 525-541, 1980.

    下載圖示 校內:2015-09-10公開
    校外:2016-09-10公開
    QR CODE