簡易檢索 / 詳目顯示

研究生: 楊岡錦
Yang, Kang-Chin
論文名稱: 具精密偏轉角控制的龍門雙驅平台奈米精度定位控制
Nanometer Positioning of a Dual-Drive Gantry Table with Precise Yaw Motion Control
指導教授: 謝成
Hsieh, Chen
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 129
中文關鍵詞: 雙驅式龍門系統精密定位塑性摩擦力模型偏轉角控制混合式驅動器潛變硬化遲滯現象塑性材料模型極限精度定位
外文關鍵詞: dual-drive gantry system, precision positioning, column friction model, yaw control, hybrid driver, intrinsic yaw angle
相關次數: 點閱:173下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對使用線性馬達的大負載雙推龍門平台進行超高精度定位技術的研發。此平台除了必須達到奈米水準的硬體定位精度極限以及到位擺動極限外,也必須能進行明確、流暢的連續式微步定位,包括持續不間斷的單格步進定位。同時,即使平台上之負載具有動態平移及轉動運動,平台偏轉角仍須維持在次弧秒以下。針對這些需求,本研究完成了以下的成果:(1) 研發出大功率線性驅動器,以推動大負載進行快速運動。此驅動器除了雜訊極低可滿足奈米定位所需外,同時改進了一般大功率線性放大器的高耗能與熱功耗問題。(2) 針對長距離連續微步定位以及其他實際應用需求,需深入解析摩擦力的動態行為,並根據二個接觸面間接觸點之材料特性與冷銲作用機制建立新的摩擦力分析模型。藉由長期大量的數值模擬與實際實驗驗證,此模型除了展示出目前所發現在各種運動條件下的摩擦力定性行為外,也指出了一些與目前摩擦力觀念相違背的現象,以及新的現象。透過數值模擬與實驗結果,我們也得以明瞭在各種定位條件,包含長距離連續微步定位時的摩擦力行為,以及產生機制,這是建立系統理論模型與擬訂定位控制策略的關鍵。(3) 將龍門平台之運動解耦為平移與旋轉,並分別對此兩運動進行控制。這種做法使得位置與偏轉角的性能表現與各自控制律參數的關聯性更明確,參數調整變得直接,這在控制實務上是非常重要的。
    經由反覆長時間驗證,在定位精度與到位擺動量上,實驗平台已達到系統硬體允許的極限(± 4nm)。長距離連續微步定位與單格步進定位的穩定平順表現也都與預期相符,同時偏轉角在所有測試中皆能保持在0.6弧秒以內,在穩態時更能達到0.01弧秒以下。

    This research is intended to develop positioning techniques for a dual-drive linear motor gantry stage carrying a heavy load. It is required that this stage not only can do positioning with nanometer precision, but also that it maintains the smallest in-position vibration. Furthermore, it must have the ability to do successive micro-step positioning including successive count-by-count positioning in a positive, smooth and responsive way. In the meantime, the yaw angle of the stage must be maintained at under a sub-arc-second even if the load is moving and rotating on it. In order to fulfill these requirements, a lot of issues have to be studied. However, the following achievements have been attained. (1) A linear driver that can generate a large amount of power to manipulate a heavy load has been developed. This driver does not have the heat dissipation problem of a traditional large power linear driver. More importantly, the noise of this driver is very small, so it is capable of doing positioning with ultra-precision. (2) To fulfill the special requirement that the table should be able to do successive micro-step positioning for a long distance smoothly, the friction dynamics are studied in depth. For this purpose, based on the material properties of contacting asperities, a model is built to simulate the friction mechanism. It has been shown that this model can exhibit qualitative behaviors of friction observed during the pre-sliding phase, slipping phase and the phase in between. Furthermore, some new phenomena that contradict well-known concepts are also revealed. Although these phenomena are not in evidence, they are the key issues to achieve ultra-precision positioning. This model also elucidates how the friction evolves during the process of successive micro-step positioning from the mechanical point of view. Knowing this is crucial for designing control strategies for this case. (3) By dividing the stage motion into translation and rotation parts, a decoupled control strategy is adopted in this research; stage positioning and yaw motion regulating are executed separately. With this kind of control scheme, it is much easier to tune the gains to adjust the system performance and to achieve stringent precision specifications. This tuning capability is very important from the point of view of a controlled engineering practice. All these works have been extensively and repeatedly verified using the gantry stage designed for this research. The nanometer positioning precision and in-position vibration have reached the limit that this system can possibly achieve. The successive micro-step positioning and count-by-count positioning are functioning as expected. The yaw angle of the stage is less than 0.01 arc-seconds at steady state and is 0.6 arc-seconds entire positioning process.

    摘 要 i 中文各章節簡介 iii 第一章 緒 論 iii 第二章 摩擦動力學研究—一個由接觸點塑性行為建構的摩擦力模型 vi 第三章 奈米定位用大功率驅動器之研製--混合式驅動器 vii 第四章 雙驅運動平台統御方程式及奈米精度定位運動控制策略 viii 第五章 系統驗證 ix 第六章 結論與未來工作 x Abstract xii 致 謝 xiv Contents xvi List of Tables xix List of Figures xx Chapter 1 Introduction 1 1.1 System description 6 1.2 The goal of this research 9 1.3 Research strategies 10 1.4 Organization of this dissertation 12 Chapter 2 Study of Friction Dynamics – A Friction Model Based on the Plastic Behavior of Asperities 13 2.1 Review of the present friction model 14 2.2 Column type friction model 17 2.3 Simulation strategies 30 2.4 Determination of parameters 34 2.5 Experiments and simulation results concerning basic friction behavior 37 2.6 Some well-known concepts about friction 49 2.7 The evolution of friction during the long-distance successive micro-step positioning 57 2.8 Conclusions of column type friction model 59 Chapter 3 High Power Driver for Nanometer Precision Positioning – A Hybrid Driver 61 3.1 Design concept 62 3.2 Performance test 67 Chapter 4 Governing Equations and Control Strategies 71 4.1 Dynamic equations 73 4.2 Friction models in the Y-direction 77 4.3 Control strategies 80 4.3.1 Coarse positioning in Y-direction - sliding phase 80 4.3.2 Yaw motion compensator 81 4.3.3 Resolution of applied forces 81 4.3.4 Fine tuning in Y-direction - sticking phase 82 Chapter 5 Experimental Verification 85 5.1 Verification of apparatus functions 85 5.1.1 Encoder noise check 85 5.1.2 Verification of encoder readings 87 5.1.3 Background noise 88 5.1.4 Driver noise 90 5.1.5 D/A converter resolution test 91 5.1.6 Intrinsic yaw angle 93 5.1.7 Feasibility of yaw compensation 94 5.2 System identification 95 5.2.1 Identification of motor parameters and stage properties related to translational motion 95 5.2.2 Identification of stage properties related to rotational motion 99 5.2.3 Identification of pre-sliding friction 102 5.2.4 Verification of the control sampling rate 104 5.2.5 Verification of the resolution of control force 105 5.3 Positioning tests 106 5.3.1 Positioning with payload fixed to the stage 106 5.3.2 Positioning with sliding payload 108 5.3.3 Positioning with rotating payload 110 5.3.4 Positioning with the payload being sliding and rotating simultaneously 111 5.3.5 Count by count operation 112 5.3.6 Crawling motion 113 5.3.7 Successive micro step positioning 115 Chapter 6 Conclusions and Future Work 117 Reference 120 Appendix 127 A.1 Specification of the gantry system 127 A.2 Algorithm of positioning control in Y-direction 129

    A. Journal Article
    Al-Bender, F., V. Lampaert, and J. Swevers. 2004a. "Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back." Chaos 14(2):446-460.
    ———. 2004b. "A novel generic model at asperity level for dry friction force dynamics." Tribology Letters 16 (1-2):81-93.
    ———. 2005. "The generalized Maxwell-slip model: a novel model for friction Simulation and compensation." IEEE Transactions on Automatic Control 50 (11):1883-1887.
    Al-Bender, F., and J. Swevers. 2008. "Characterization of friction force dynamics." IEEE Control Systems Magazine 28 (6):64-81.
    Berman, A., C. Drummond, and J. Israelachvili. 1998. "Amontons' law at the molecular level." Tribology Letters 4 (2):95-101.
    Canudas de Wit, C., H. Olsson, K. J. Astrom, and P. Lischinsky. 1995. "A new model for control of systems with friction." IEEE Transactions on Automatic Control 40 (3):419-425.
    Chang, T. H., W. M. Lin, and S. L. Chen. 2008. "Tracking control for a synchronized dual parallel linear motor machine tool." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 222 (8):851-862.
    Chang, W. R., I. Etsion, and D. B. Bogy. 1987. "An elastic-plastic model for the contact of rough surfaces." Journal of Tribology 109 (2):257-263.
    Chen, C. L., M. J. Jang, and K. C. Lin. 2004. "Modeling and high-precision control of a ball-screw-driven stage." Precision Engineering 28 (4):483-495.
    Choi, J.J., I.H. Seong, and J.S. Kim. 2006. "Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller." Mechatronics 16 (2):97-104.
    Chou, P.H., C.S. Chen, and F.J. Lin. 2012. "DSP-based synchronous control of dual linear motors via Sugeno type fuzzy neural network compensator." Journal of the Franklin Institute 349 (3):792-812.
    Chu, B., S. Kim, D. Hong, H.K. Park, and J. Park. 2004. "Optimal cross-coupled synchronizing control of dual-drive gantry system for a SMD assembly machine." JSME International Journal Series C 47 (3):939-945.
    Courtney-Pratt, J.S., and E. Eisner. 1957. "The effect of a tangential force on the contact of metallic bodies." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences A238:529-550.
    Dahl, P.R. 1976. "Solid friction damping of mechanical vibrations." AIAA Journal 14 (12):1675-1682.
    De Moerlooze, K., F. Al-Bender, and H. Van Brussel. 2010. "A generalised asperity-based friction model." Tribology Letters 40 (1):113-130.
    Dupont, P., V. Hayward, B. Armstrong, and F. Altpeter. 2002. "Single state elastoplastic friction models." IEEE Transactions on Automatic Control 47 (5):787-792.
    Ford, I.J. 1993. "Roughness effect on friction for multi-asperity contact between surfaces." Journal of Physics D: Applied Physics 26 (12):2219-2225.
    Futami, S., A. Furutani, and S. Yoshida. 1990. "Nanometer positioning and its micro-dynamics." Nanotechnology 1 (1):31-37.
    García-Herreros, I., X. Kestelyn, J. Gomand, R. Coleman, and P.J. Barre. 2012. "Model-based decoupling control method for dual-drive gantry stages: A case study with experimental validations." Control Engineering Practice 21 (3):1-10.
    Giam, T.S., K.K. Tan, and S. Huang. 2007. "Precision coordinated control of multi-axis gantry stages." ISA Trans 46 (3):399-409.
    Greenwoo, J.A., and J.B. Williams. 1966. "Contact of nominally flat surfaces." Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 295 (1442):300-319.
    Haessig, D.A., and B. Friedland. 1991. "On the modeling and simulation of friction." Journal of Dynamic Systems, Measurement, and Control 113 (3):354-362.
    Harnoy, A., B. Friedland, and H. Rachoor. 1994. "Modeling and simulation of elastic and friction forces in lubricated bearings for precise motion control." Wear 172 (2):155-165.
    Hsieh, C., and Y. C. Pan. 2000. "Dynamic behavior and modelling of the pre-sliding static friction." Wear 242 (1-2):1-17.
    Hsieh, C., J.L. Lin, J.C. Huang, and C.H. Chen. 2006. "Precision-limit positioning of a Linear motor nano drive system." Materials Science Forum 505-507:1243-1248.
    Jacobson, Bo. 2003. "The Stribeck memorial lecture." Tribology International 36 (11):781-789.
    Johnson, K.L. 1955. "Surface interaction between elastically loaded bodies under tangential forces." Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 230 (1183):531-548.
    Karnopp, D. 1985. "Computer simulation of stick-slip friction in mechanical dynamic systems." Journal of Dynamic Systems, Measurement, and Control 107 (1):100-103.
    Karpenko, Y.A., and A. Akay. 2001. "A numerical model of friction between rough surfaces." Tribology International 34 (8):531-545.
    Kestelyn, X., J. Gomand, A. Bouscayrol, and P.J. Barre. 2009. "Control of a symmetrical dual-drive gantry system using energetic macroscopic representation." Solid State Phenomena 144:181-185.
    Koren, Y. 1980. "Cross-coupled biaxial computer control for manufacturing systems." Journal of Dynamic Systems Measurement and Control-Transactions of the Asme 102 (4):265-272.
    Lampaert, V., J. Swevers, and F. Al-Bender. 2002. "Modification of the Leuven integrated friction model structure." IEEE Transactions on Automatic Control 47 (4):683-687.
    Lin, T.Y., Y.C. Pan, and C. Hsieh. 2003. "Precision-limit positioning of direct drive systems with the existence of friction." Control Engineering Practice 11 (3):233-244.
    Ogilvy, J.A. 1991. "Numerical-simulation of friction between contacting rough surfaces." Journal of Physics D-Applied Physics 24 (11):2098-2109.
    Otsuka, J. 1992. "Nanometer level positioning using three kinds of lead screws." Nanotechnology 3 (1):29-36.
    Polycarpou, A., and A. Soom. 1992. Transitions between sticking and slipping at lubricated line contacts. ASME Design Engineering Division DE1992:139-148.
    Ro, P.I., and P.I. Hubbel. 1993. "Model-reference adaptive-control of dual-mode micro macro dynamics of ball screws for nanometer motion." Journal of Dynamic Systems Measurement and Control-Transactions of the ASME 115 (1):103-108.
    Stevens, J.S. 1899. "Some experiments in molecular contact." Physical 8 (1):49-53.
    Sun, Y. and G.C. Walker. 2005. "Viscoelastic response of poly(dimethylsiloxane) in the adhesive interaction with AFM tips." Langmuir 21 (19):8694-8702.
    Swevers, J., F. Al-Bender, C.G. Ganseman, and T. Projogo. 2000. "An integrated friction model structure with improved presliding behavior for accurate friction compensation." IEEE Transactions on Automatic Control 45 (4):675-686.
    Tan, K.K., S.Y. Lim, S. Huang, H.F. Dou, and T.S. Giam. 2004. "Coordinated motion control of moving gantry stages for precision applications based on an observer-augmented composite controller." IEEE Transactions on Control Systems Technology 12 (6):984-991.
    Tworzydlo, W.W., W. Cecot, J.T. Oden, and C.H. Yew. 1998. "Computational micro- and macroscopic models of contact and friction: formulation, approach and applications." Wear 220 (2):113-140.
    Uehara, T. 2013. "Molecular dynamics simulation of stick-slip friction on a metal surface." Applied Mechanics and Materials 459:26-33.
    Whitehouse, D.J., and J.F. Archard. 1970. "The properties of random surfaces of significance in their contact." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 316 (1524):97-121.
    Yao, W.S., F.Y. Yang, and M.C. Tsai. 2011. "Modeling and control of twin parallel-axis linear servo mechanisms for high-speed machine tools." International Journal of Automation and Smart Technology 1 (1):77-85.
    Zhang, B., Z.Y. Shi, J.C. Lin, and H. Zhang. 2013. "Design for two-dimensional precision stage with long stroke, micro stepping and heavy load carrying capacity." Journal of the Chinese Society of Mechanical Engineers 34 (1):63-72.

    B. Conference Proceedings
    Osborne, N. and D. Rittenhouse. 1974. "The modeling of friction and its effects on fine pointing control." Conference of AIAA Mechanics and Control of Flight, 74-875. Anaheim, California.
    Radcliff, C. J., and S.C. Southward. 1990. "A property of stick-slip friction models which promotes limit cycle generation." Proc. of 1990 ACC, 1198-1203. San Diego, California.

    C. Book
    Bowden, F.P., and D. Tabor. 2001. Friction and Lubrication. 3 ed. London: Oxford University Press.
    Coulomb, Charles Augustin de. 1781. Théorie des machines simples , en ayant égard au frottement de leurs parties et à la roideur des cordages. Nouvelle édition, 1821 ed. Quai des Augustins, Paris: Bachelier Librairie.

    D. Dissertation/Thesis
    Chang, Po-huai (張博懷). 2006. "運用有限元素法設計單軸短行程微奈米定位系統." 碩士論文, 國立台灣科技大學.
    Chou, Po-Huan (周柏寰). 2011. "智慧型同動控制之龍門式定位平台." 博士論文, 國立東華大學.
    Ko, Ming-Hsien (柯明賢). 2005. "同軸向雙線型馬達同步運動控制之設計與實現." 碩士論文, 國立成功大學.
    Lin, Wei-Ming (林緯明). 2007. "雙線型馬達同動工具機之追蹤控制研究." 碩士論文, 國立成功大學.
    Wu, Meng-Chieh (吳孟杰). 2005. "線性伺服系統同動控制之研究." 碩士論文, 國立成功大學.
    Xin, Jiun-Guang (辛俊光). 1997. "永磁式直流有刷馬達之參數自動鑑別系統." 碩士論文, 成功大學.
    Yang, Chun-Hsien(楊君賢). 2003. "具機構耦合之雙線性伺服系統鑑別與控制." 碩士論文, 國立成功大學.
    Yao, Wu-Sung (姚武松) 2002. "高速工具機之線性伺服系統設計." 博士論文, 國立成功大學.

    D. Product catalog/Datasheet
    Aerotech Inc. 2015, Product catalog, internet website http://www.aerotech.com/product-catalog/gantry-system.aspx. (USA)
    Rockwell Automation Inc. 2006, Datasheet of Hercules Series Gantry. (USA)
    Soonhan Engineering Corp. 2006, Product Catalog (Korea)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE