簡易檢索 / 詳目顯示

研究生: 林依杏
Lin, Yi-Hsing
論文名稱: 金屬/非金屬摻雜光觸媒於日光燈下處理含氯/硫揮發性有機物之研究
Metal/non-metal doped TiO2 for the degradation of chlorine/sulfur-containing VOCs under a fluorescent lamp
指導教授: 朱信
Chu, Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 193
中文關鍵詞: 二甲基二硫二甲基硫可見光共摻雜動力機制
外文關鍵詞: Dimethyl disulfide (DMDS), Dimethyl sulfide (DMS), Visible light, Co-doped TiO2, Kinetics, mechanism
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 揮發性有機化合物(VOCs)是重要的空氣污染物,他們會對人體的健康造成危害。含氯揮發性有機化合物已被廣泛地應用在各種工業生產和製藥程序上,主要作為溶劑,脫脂劑,以及各種清洗劑。1,2-二氯乙烷(1,2-dichloroethane, DCE)為工業上常用的有機溶劑,但如果在使用過程中排放到環境中,將對人體造成危害。另外,含硫揮發性有機硫化合物,由於其難聞的氣味與低嗅覺閾值引起了極大的關注。二甲基硫(DMS)和二甲基二硫(DMDS)皆含有非常低的嗅覺閾值。反覆接觸有氣味污染物,可能會引起慢性呼吸系統和心血管疾病,因此應極力消除此氣味污染物的排放,以改善人們生活居住的品質。
    本研究利用溶膠凝膠法自行製備光觸媒,並藉由金屬/非金屬摻雜TiO2期望提高光觸媒在可見光下處理揮發性有機物的能力。首先以1,2-二氯乙烷篩選非金屬摻雜TiO2,實驗結果顯示硫摻雜具有較好之光催化效果。依上述結果,探討摻雜不同含硫比例之光觸媒光催化二甲基硫的能力。進一步在可見光下使用共摻雜光觸媒處理DMDS。同時利用各種輔助實驗,如TG/DTA、XRD、UV-Visible、FTIR、和XPS等儀器分析光觸媒晶相變化、粒徑分佈、吸光度、化學鍵結等物化特性。
    對1,2-二氯乙烷進行光催化降解,結果顯示硫摻雜光觸媒比氮摻雜效果更好,主要由於其能隙較低與高表面積。依上述結果,接著以不同含硫比例摻雜光觸媒在可見光下處理二甲基硫,其結果顯示,經硫摻雜之光觸媒晶相已完全轉換為活性較佳的anatase晶相,且經硫摻雜的TiO2粒徑明顯變小。由XPS分析結果可知,S摻雜之光觸媒是以S6+型態存在,鍵結方式為Ti–O–S。在可見光的照射下,S0.05/TiO2顯示有較好之光催化效果,故選用S0.05/TiO2光觸媒作為後續研究。在操作參數實驗中,可知隨二甲基硫進流濃度(30、55、75和100 ppm)及相對濕度(10%、40%、80%)提高,轉化率隨之下降;隨進流溫度(25°C、35°C及45°C)上升二甲基硫之轉化率則會增加。此外,以Langmuir-Hinshelwood model模擬動力,結果顯示二甲基硫吸附常數KA大於H2O吸附常數KW,表示二甲基硫吸附能力大於H2O吸附能力。反應速率常數k隨溫度上升而提高,顯示整體反應受表面反應及吸附綜合影響,光催化反應之活化能為13.3 kJ mol–1。DMS光降解的主要氧化產物為SO2,CO2,二甲基二硫,二甲亞碸,二甲基碸,一氧化碳和甲磺酸。在乾燥條件下DMS的光催化降解主要有兩個反應途徑:C–S鍵的斷裂和超氧自由基對S的氧化;在潮濕的條件下光催化降解DMS主要包含兩個潛在反應途徑:氫氧自由基對S的氧化和C–S鍵的斷裂。
    比較純TiO2和硫摻雜TiO2,可發現硫和金屬共摻雜的光觸媒具有更小的晶體,且利用可見光的能力更強。XPS的分析結果顯示:V4+,Fe3+,和S6+成功摻雜進入二氧化鈦的晶格,但是鋅離子卻是吸附在TiO2的表面上,形成複合光觸媒。S0.05Zn0.001/ TiO2顯示出對DMDS最佳之催化活性和對含硫揮發性有機化合物的抗毒性。DMDS的轉化率隨著相對濕度的提高而降低。另外,光催化效率亦隨著溫度的升高而增加,此現象主要可依碰撞理論而解釋之。Langmuir-Hinshelwood動力學第4型適合用於描述二甲基二硫的光催化降解特性。根據FT-IR和GC-MS的分析結果,光催化二甲基二硫後生成的含硫副產物包括SO2,C2H6S3(DMTS),C2H6O2S2(MMTS)和MSA,另外還可在氣相中測得CO2,CO,HCHO,和醋酸。二甲基二硫的光降解方式主要可分為:硫氧化,碳的氧化,以及S–S鍵斷裂。在乾燥與潮溼環境下,主要的關鍵影響因子分別是超氧自由基和•OH自由基。

    Volatile organic compounds (VOCs) are important air pollutants with regard to their health implications and frequent occurrence. Chlorinated volatile organic compounds (Cl-VOCs) are widely used in industrial manufacture and pharmaceutical industries as solvents, degreasing agents, cleaning agents, and a variety of commercial products. 1,2-Dichloroethane (1,2-DCE), a widely used as one of organic solvents in the industry, can damage the human when it releases. Besides, Volatile organic sulfur compounds (VOSCs) have caused great concern due to their offensive odor, low odor thresholds value (OTV). Dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) have an offensive smells with a very low odor threshold value (OTV). The anthropogenic source can easily result in local concentrations strongly exceeding OTV. Repeated exposure to odorous pollution can cause chronic respiratory and cardiovascular diseases. Eliminating pollutant emissions is achievable to improve the quality of life for people living.
    In this study, photocatalysts were prepared by a sol-gel method. The photocatalytic performance of several nonmetal-doped TiO2 was evaluated for the degradation of 1, 2-DCE under visible light irradiation. Based on the result of 1, 2-DCE photodegradation, sulfur doped TiO2 for photocatalytic degradation of gaseous DMS was attempted. Soon afterwards, the photocatalysis performance of S,M (M = iron, vanadium, and zinc) co-doped TiO2 for photocatalytic degradation of gaseous DMDS under visible light irradiation was further conducted. The physical and chemical characteristics of photocatalysts were analyzed by thermo-gravimetric/differential-thermal analysis, X-ray diffraction, Fourier transform-infrared spectroscopy, UV-Visible spectroscopy, and XPS, respectively. The photocatalytic degradation of VOCs, kinetics of the reaction, and pathway of SVOCs photooxidation has been investigated under visible irradiation.
    The results show the degradation rate of 1,2-DCE by S0.15/TiO2 is faster than that by N0.15/TiO2 because of its narrower band gap and the larger specific surface area. Therefore, the photocatalytic decomposition rate of dimethyl sulfide under visible light was expected to increase by doping sulfur. The result shows S-doped can reduce the crystalline size of TiO2 and all photocatalysts are anatase phase structure. The XPS results of S-doped TiO2 indicate that S exists as S6+ on the surface crystal lattices and leads to the formation of Ti–O–S in the TiO2 lattice. The activity of S-doped TiO2 was determined by the measurement of DMS degradation under visible light. According to the result of activity test, S0.05/TiO2 was chosen for further parameter studies. The conversion of DMS increases with the decreasing DMS concentration. The decomposition efficiency of DMS increases with decreasing relative humidity, and with increasing temperature. The presence of water vapor in air with DMS significantly impacts the photocatalytic activity. The phenomenon is ascribed to the competitive adsorption of water vapor and DMS on the active sites of the photocatalysts. By fitting the Langmuir-Hinshelwood model, the result shows that KA is larger than KW and it also represents that adsorption ability of DMS is greater than H2O. The value of k rises with the increasing temperature. The photocatalytic activation energy of the degradation of DMS by S0.05/TiO2 is 13.3 kJ mol–1. The main oxidation products of DMS photodegradation are SO2, CO2, DMDS, DMSO, DMSO2, CO, and MSA. There are two main reactions for photocatalytic degradation of DMS in dry condition: S oxidation by superoxide radicals and C-S bond cleavage. In the case of the wet condition, there are two potential reaction pathways for photocatalytic degradation of DMS: S oxidation by •OH radical and C-S bond cleavage.
    Compared to S/TiO2, sulfur and transition metal co-doped TiO2 photocatalysts have smaller crystal sizes and shift further to visible-light absorption region. The XPS spectra confirm that V4+, Fe3+, and S6+ are successfully doped into the lattice of TiO2, but Zn2+ is adsorbed on the surface of TiO2. S0.05Zn0.001/TiO2 shows the best photocatalytic activity and S-VOCs tolerance for the degradation of DMDS under visible irradiation among all co-doped TiO2 photocatalysts. The conversion of DMDS decreases with increasing relative humidity. Besides, photocatalytic efficiency of DMDS increases with increasing temperature, which can be described by the rate law and explained by collision theory. The Langmuir-Hinshelwood model 4 is a feasible way to describe the photocatalytic degradation of DMDS by S0.05Zn0.001/TiO2 in this study. Based on the FT-IR and GC-MS characterization results, SO2, C2H6S3 (DMTS), C2H6O2S2 (MMTS), and MSA are the major sulfur-containing products of the photocatalytic degradation of gaseous DMDS, and CO2, CO, HCHO, CH3OOH, and H2O are also presented in the gas phase. Several organic products have been detected in the degradation of DMDS, which show the presence of different types of reaction: (1) oxidation of sulfur, (2) oxidation of carbon, and (3) cleavage of S–S bond. Superoxide radicals and •OH radical are considered the key species for the dry and wet reaction process, respectively.

    摘 要 I Abstract III 致謝 VI CONTENT VII LIST OF TABLES XIII LIST OF FIGURES XVI CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Objectives and tasks 3 CHAPTER 2 LITERATURE REVIEW 6 2.1 Chlorinated volatile organic compounds (Cl-VOCs) 6 2.1.1 Property of 1,2-DCE 7 2.1.2 The treatment method of Cl-VOCs 7 2.2 Volatile organic sulfur compounds (VOSCs) 7 2.2.1 Property of DMS 8 2.2.2 Property of DMDS 9 2.2.3 The treatment method of VOSCs 9 2.3 Photocatalysis 10 2.3.1 N-type semiconductor 10 2.3.2 P-type semiconductor 10 2.3.3 Photocatalyst 11 2.3.4 Photocatalysis principle 11 2.3.5 Band gap 13 2.4 Photocatalyst preparation 13 2.4.1 Impregnation method 13 2.4.2 Sol-gel method 14 2.4.3 Precipitation 15 2.5 The modification of titanium dioxide 15 2.5.1 Doped TiO2 with metal atoms 16 2.5.2 Doped TiO2 with metal ions 17 2.5.3 Doped TiO2 with non-metal elements 18 2.5.4 Co-doped TiO2 19 2.5.5 Coupled semiconductors 20 2.5.6 Sensitizations 20 2.6 Factors for pohotcatalytic degradation 23 2.6.1 Nature of the photocatalyst 23 2.6.2 Photocatalyst concentration 23 2.6.3 Effect of humidity 24 2.6.4 Effect of pollutant concentration 24 2.6.5 Oxygen concentration 25 2.5.6 Residence time 25 2.6.7 Reaction temperature 25 2.7 Kinetic models of photocatalytic oxidation reaction process 28 2.7.1 Reactor 28 2.7.2 Photocatalytic oxidation 29 2.7.3 The Langmuir-Hinshelwood (L-H) model 32 2.7.4 Mars and van Krevelen model 34 2.7.5 Arrhenius equation 36 2.8 Intermediates 37 2.9 Catalyst deactivation 39 CHAPTER 3 EXPERIMENTAL MATERIALS 40 3.1 Photocatalyst preparation 41 3.1.1 Chemicals 41 3.1.2 Sol-gel process for photocatalyst preparation 42 3.2 Photocatalyst characterization 43 3.2.1 Thermogravimetric/ differential thermal analysis (TG/DTA) 44 3.2.2 X-ray powder diffraction spectroscopy (XRD) 44 3.2.3 BET surface analysis 45 3.2.4 Fourier transform infrared spectroscopy (FTIR) 45 3.2.5 UV-visible spectrometry 46 3.2.6 X-ray photoelectron spectroscopy (XPS) 46 3.2.7 Transmission electron microscopy (TEM) 47 3.2.8 ICP-MS analysis 47 3.3 Experimental reaction procedures 47 3.3.1 Equipments 47 3.3.2 Experimental procedures 50 3.3.3 Calibration cures 52 3.3.4 VOC concentration stably feeding test and photolysis test 54 CHAPTER 4 RESULTS AND DISCUSSION 58 4.1 The characterization of TiO2, N0.15/TiO2, and S0.15/TiO2 58 4.1.1 Thermal analysis 58 4.1.2 XRD and BET analysis 63 4.1.3 UV-vis analysis 65 4.2 Photocatalytic degradation of 1, 2-DCE 67 4.3 The characterization of TiO2 and Sx/TiO2 69 4.3.1 XRD analysis 69 4.3.2 TEM analysis 71 4.3.3 UV-Vis absorption spectra 75 4.3.4 BET analysis 77 4.3.5 XPS spectra 79 4.3.6 FTIR spectroscopy analysis 81 4.4 Photocatalytic degradation of DMS by S-doped TiO2 83 4.5 Operating parameters for photocatalytic degradation of DMS by S0.05/TiO2 85 4.5.1 Effect of VOC concentration 85 4.5.2 Effect of relative humidity 87 4.5.3 Effect of temperature 89 4.6 Kinetics of photocatalytic degradation of DMS by S0.05/TiO2 91 4.7 Pathways of photocatalytic degradation of DMS by S0.05/TiO2 100 4.7.1 Gaseous products and byproducts by FTIR 100 4.7.2 Gaseous products and byproducts by GC-MS chromatogram 106 4.7.3 Reaction pathways 107 4.8 The characterization of S0.05/TiO2 and co-doped TiO2 112 4.8.1 Thermal analysis 112 4.8.2 XRD analysis 116 4.8.3 UV-Vis absorption spectra 119 4.8.4 BET analysis 121 4.8.5 XPS spectra 122 4.9 Photocatalytic degradation of DMDS by co-doped TiO2 127 4.10 Sulfur tolerance analysis 129 4.11 Schematic photocatalytic reaction mechanism of co-doped TiO2 132 4.12 Operating parameters for photocatalytic degradation of DMDS by S0.05Zn0.001/TiO2 137 4.12.1 Effect of temperature 137 4.12.2 Effect of relative humidity 139 4.12.3 Effect of oxygen 142 4.12.4 Performance of this study 142 4.13 Kinetics of photocatalytic degradation of DMDS by S0.05Zn0.001/TiO2 145 4.14 Pathways of photocatalytic degradation of DMDS by S0.05Zn0.001/TiO2 154 4.14.1 Gaseous products and byproducts by FTIR 154 4.14.2 Gaseous products and byproducts by GC-MS chromatogram 160 4.14.3 Reaction pathways 161 CHAPTER 5 CONCLUSION AND SUGGESTION 167 5.1 Conclusion 167 5.2 Suggestion 169 Reference 171

    Abraham, S., Joslyn, S., Suffet, I., 2015. Treatment of odor by a seashell biofilter at a wastewater treatment plant. Journal of the Air & Waste Management Association 65, 1217-1228.
    Adán, C., Bahamonde, A., Fernández-García, M., Martínez-Arias, A., 2007. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Applied Catalysis B: Environmental 72, 11-17.
    Andreae, M.O., Raemdonck, H., 1983. Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221, 744-747.
    Ang, T.P., Law, J.Y., Han, Y.F., 2010. Preparation, characterization of sulfur-doped nanosized TiO2 and photocatalytic degradation of methylene blue under visible light. Catalysis Letters 139, 77-84.
    Aparicio, M., Jitianu, A., Klein, L.C., 2012. Sol-gel processing for conventional and alternative energy. Springer Science & Business Media.
    Arman, S., Omidvar, H., Tabaian, S., Sajjadnejad, M., Fouladvand, S., Afshar, S., 2014. Evaluation of nanostructured S-doped TiO2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surface and Coatings Technology 251, 162-169.
    Asahi, R., Morikawa, T., Irie, H., Ohwaki, T., 2014. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews 114, 9824-9852.
    Assadi, A.A., Bouzaza, A., Wolbert, D., Petit, P., 2014. Isovaleraldehyde elimination by UV/TiO2 photocatalysis: comparative study of the process at different reactors configurations and scales. Environmental Science and Pollution Research 21, 11178-11188.
    Bandosz, T.J., 2006. Carbonaceous materials as desulfurization media. Combined and Hybrid Adsorbents. Springer, pp. 145-164.
    Barakat, N.A., Kanjwal, M.A., Chronakis, I.S., Kim, H.Y., 2013. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: negative impact with the nanofibers. Journal of Molecular Catalysis A: Chemical 366, 333-340.
    Barkul, R., Koli, V., Shewale, V., Patil, M., Delekar, S., 2016. Visible active nanocrystalline N-doped anatase TiO2 particles for photocatalytic mineralization studies. Materials Chemistry and Physics 173, 42-51.
    Barnes, I., Becker, K., Mihalopoulos, N., 1994. An FTIR product study of the photooxidation of dimethyl disulfide. Journal of Atmospheric Chemistry 18, 267-289.
    Barnes, I., Becker, K., Patroescu, I., 1996. FTIR product study of the OH initiated oxidation of dimethyl sulphide: Observation of carbonyl sulphide and dimethyl sulphoxide. Atmospheric Environment 30, 1805-1814.
    Bayati, M., Moshfegh, A., Golestani-Fard, F., 2010. Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Materials letters 64, 2215-2218.
    Benoit-Marquié, F., Wilkenhöner, U., Simon, V., Braun, A.M., Oliveros, E., Maurette, M.T., 2000. VOC photodegradation at the gas–solid interface of a TiO2 photocatalyst: Part I: 1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A: Chemistry 132, 225-232.
    Bentley, M.D., Douglass, I.B., Lacadie, J.A., Whittier, D.R., 1972. The photolysis of dimethyl sulfide in air. Journal of the Air Pollution Control Association 22, 359-363.
    Brinker, C.J., Scherer, G.W., 2013. Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
    Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M.T., Lacombe, S., 2007. Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization. Catalysis Today 122, 27-38.
    Chatterjee, D., Dasgupta, S., N Rao, N., 2006. Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Solar Energy Materials and Solar Cells 90, 1013-1020.
    Chen, J., Zhong, J., Li, J., Dou, L., 2016. Enhanced sun light photocatalytic performance of N, S-codoped TiO2 prepared by sol-gel method using ammonium thiocyanate. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46, 1596-1604.
    Chen, Q., Jiang, D., Shi, W., Wu, D., Xu, Y., 2009. Visible-light-activated Ce–Si co-doped TiO 2 photocatalyst. Applied Surface Science 255, 7918-7924.
    Chen, Y., Ma, X.J., 2014. Preparation of visible-light active Mn-doped TiO2 photocatalyst and its photodegradation of methylene blue from solution. Advanced Materials Research. Trans Tech Publ, pp. 531-535.
    Choi, W., Termin, A., Hoffmann, M.R., 1994. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry 98, 13669-13679.
    Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., Navío, J.A., 2006. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Applied Catalysis B: Environmental 63, 45-59.
    Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V.E., 2008. Sol–gel S-doped TiO2 materials for environmental protection. Journal of Non-Crystalline Solids 354, 705-711.
    Cullis, C.F., Roselaar, L.C., 1959. The gaseous oxidation of dimethyl disulphide. Transactions of the Faraday Society 55, 1562-1564.
    De la Cruz, N., Romero, V., Dantas, R.F., Marco, P., Bayarri, B., Giménez, J., Esplugas, S., 2013. o-Nitrobenzaldehyde actinometry in the presence of suspended TiO2 for photocatalytic reactors. Catalysis Today 209, 209-214.
    de Souza Lourenço, R.E., Passoni, L.C., Canela, M.C., 2014. The synergistic effect of TiO2 and H5PW10V2O40 in photocatalysis as a function of the irradiation source. Journal of Molecular Catalysis A: Chemical 392, 284-289.
    Debono, O., Thévenet, F., Gravejat, P., Hequet, V., Raillard, C., Le Coq, L., Locoge, N., 2013. Gas phase photocatalytic oxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance. Journal of Photochemistry and Photobiology A: Chemistry 258, 17-29.
    Demeestere, K., Dewulf, J., De Witte, B., Van Langenhove, H., 2005. Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and reaction pathways. Applied Catalysis B: Environmental 60, 93-106.
    Demeestere, K., Dewulf, J., Van Langenhove, H., 2007. Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: state of the art. Critical Reviews in Environmental Science and Technology 37, 489-538.
    Devi, L.G., Kavitha, R., 2013. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Applied Catalysis B: Environmental 140, 559-587.
    Ertl, G., Knözinger, H., Weitkamp, J., 2008. Preparation of solid catalysts. John Wiley & Sons.
    Eslami, A., Amini, M.M., Yazdanbakhsh, A.R., Mohseni‐Bandpei, A., Safari, A.A., Asadi, A., 2015. N, S co‐doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non‐steroidal anti‐inflammatory drugs in water: a comparative study. Journal of Chemical Technology and Biotechnology.
    Eydivand, S., Nikazar, M., 2015. Degradation of 1, 2-dichloroethane in simulated wastewater solution: a comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles. Chemical Engineering Communications 202, 102-111.
    Fasih Ramandi, N., Shemirani, F., 2015. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples. Talanta 131, 404-411.
    Fathinia, M., Khataee, A.R., 2013. Residence time distribution analysis and optimization of photocatalysis of phenazopyridine using immobilized TiO2 nanoparticles in a rectangular photoreactor. Journal of Industrial and Engineering Chemistry 19, 1525-1534.
    Fittschen, C., Whalley, L.K., Heard, D.E., 2014. The reaction of CH3O2 radicals with OH radicals: a neglected sink for CH3O2 in the remote atmosphere. Environmental Science & Technology 48, 7700-7701.
    Fogler, H.S., 1999. Elements of chemical reaction engineering.
    Giri, B.S., Kim, K.H., Pandey, R., Cho, J., Song, H., Kim, Y.S., 2014. Review of biotreatment techniques for volatile sulfur compounds with an emphasis on dimethyl sulfide. Process Biochemistry 49, 1543-1554.
    Goodfellow, H.D., 2001. Industrial ventilation design guidebook. Academic press.
    Grandcolas, M., Cottineau, T., Louvet, A., Keller, N., Keller, V., 2013. Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Applied Catalysis B: Environmental 138–139, 128-140.
    Gu, D.E., Yang, B.C., Hu, Y.D., 2008. V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catalysis Communications 9, 1472-1476.
    Guan, K., 2005. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surface and Coatings Technology 191, 155-160.
    Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M.N., Daniele, S., 2007. Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor. Catalysis Today 122, 160-167.
    Gupta, K., Singh, R., Pandey, A., Pandey, A., 2013. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein Journal of Nanotechnology 4, 345-351.
    Habib, M.A., Shahadat, M.T., Bahadur, N.M., Ismail, I.M., Mahmood, A.J., 2013. Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. International Nano Letters 3, 1-8.
    Hagen, J., 2015. Industrial catalysis: a practical approach. John Wiley & Sons.
    Hajaghazadeh, M., Vaiano, V., Sannino, D., Kakooei, H., Sotudeh-Gharebagh, R., Ciambelli, P., 2014. Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor. Catalysis Today 230, 79-84.
    Hajiesmaili, S., Josset, S., Bégin, D., Pham-Huu, C., Keller, N., Keller, V., 2010. 3D solid carbon foam-based photocatalytic materials for vapor phase flow-through structured photoreactors. Applied Catalysis A: General 382, 122-130.
    Hameed, B., Lee, T., 2009. Degradation of malachite green in aqueous solution by Fenton process. Journal of Hazardous Materials 164, 468-472.
    Hao, H., Zhang, J., 2009. The study of iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity. Microporous and Mesoporous Materials 121, 52-57.
    Harizanov, O., Ivanova, T., Harizanova, A., 2001. Study of sol–gel TiO2 and TiO2–MnO obtained from a peptized solution. Materials letters 49, 165-171.
    Hayes, R.E., Kolaczkowski, S.T., 1998. Introduction to catalytic combustion. CRC Press.
    Hayes, R.E., Mmbaga, J., 2012. Introduction to Chemical Reactor Analysis. CRC Press.
    Huang, B., Lei, C., Wei, C., Zeng, G., 2014. Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environment International 71, 118-138.
    Hung, W.C., Chen, Y.C., Chu, H., Tseng, T.K., 2008. Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science 255, 2205-2213.
    Hung, W.C., Fu, S.H., Tseng, J.J., Chu, H., Ko, T.H., 2007. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere 66, 2142-2151.
    Imelik, B., Vedrine, J.C., 2013. Catalyst characterization: physical techniques for solid materials. Springer Science & Business Media.
    Ismail, A.A., Bahnemann, D.W., Al-Sayari, S.A., 2012. Synthesis and photocatalytic properties of nanocrystalline Au, Pd and Pt photodeposited onto mesoporous RuO2-TiO2 nanocomposites. Applied Catalysis A: General 431, 62-68.
    Jardine, K., Yañez‐Serrano, A., Williams, J., Kunert, N., Jardine, A., Taylor, T., Abrell, L., Artaxo, P., Guenther, A., Hewitt, C., 2015. Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles 29, 19-32.
    Jia, L., Wu, C., Li, Y., Han, S., Li, Z., Chi, B., Pu, J., Jian, L., 2011. Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. Applied Physics Letters 98, 211903.
    Jo, W.K., Kang, H.J., Chun, H.-H., 2014. Degradation of gas-phase organic contaminants via nitrogen-embedded one-dimensional rod-shaped titania in a plug-flow reactor. Environmental Technology 35, 2132-2139.
    Jo, W.K., Kim, J.T., 2009. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. Journal of Hazardous Materials 164, 360-366.
    Jo, W.K., Shin, M.H., 2010. Visible‐light‐activated photocatalysis of malodorous dimethyl disulphide using nitrogen‐enhanced TiO2. Environmental Technology 31, 575-584.
    Kaan, C.C., Aziz, A.A., Matheswaran, M., Saravanan, P., Ibrahim, S., 2012. Heterogeneous photocatalytic oxidation an effective tool for wastewater treatment-a review. INTECH Open Access Publisher.
    Katz, H.S., Mileski, J., 1987. Handbook of fillers for plastics. Springer Science & Business Media.
    Khan, J.A., Han, C., Shah, N.S., Khan, H.M., Nadagouda, M.N., Likodimos, V., Falaras, P., O'Shea, K., Dionysiou, D.D., 2014. Ultraviolet–visible light–sensitive high surface area phosphorous-fluorine–co-doped TiO2 nanoparticles for the degradation of atrazine in water. Environmental Engineering Science 31, 435-446.
    Kisch, H., 2014. Semiconductor photocatalysis: principles and applications. John Wiley & Sons.
    Korologos, C.A., Nikolaki, M.D., Zerva, C.N., Philippopoulos, C.J., Poulopoulos, S.G., 2012. Photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts. Journal of Photochemistry and Photobiology A: Chemistry 244, 24-31.
    Korologos, C.A., Philippopoulos, C.J., Poulopoulos, S.G., 2011. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment 45, 7089-7095.
    Krishnan, P., Zhang, M.-H., Cheng, Y., Riang, D.T., Liya, E.Y., 2013. Photocatalytic degradation of SO2 using TiO2-containing silicate as a building coating material. Construction and Building Materials 43, 197-202.
    Kulkarni, S.K., 2015. Nanotechnology: principles and practices. Springer.
    Lee, B.Y., Park, S.H., Kang, M., Lee, S.C., Choung, S.J., 2003. Preparation of Al/TiO2 nanometer photo-catalyst film and the effect of H2O addition on photo-catalytic performance for benzene removal. Applied Catalysis A: General 253, 371-380.
    Legrand-Buscema, C., Malibert, C., Bach, S., 2002. Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films 418, 79-84.
    Lemus, J., Martin-Martinez, M., Palomar, J., Gomez-Sainero, L., Gilarranz, M.A., Rodriguez, J.J., 2012. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chemical Engineering Journal 211–212, 246-254.
    Levenspiel, O., 1999. Chemical reaction engineering. Industrial & Engineering Chemistry Research 38, 4140-4143.
    Li, F., Li, H., Guan, L.X., Yao, M.M., 2014a. Nanocrystalline Co2+/F− codoped TiO2–SiO2 composite films for environmental applications. Chemical Engineering Journal 252, 1-10.
    Li, G., Liang, Z., An, T., Zhang, Z., Chen, X., 2015. Efficient bio-deodorization of thioanisole by a novel bacterium Brevibacillus borstelensis GIGAN1 immobilized onto different parking materials in twin biotrickling filter. BioresourceTechnology 182, 82-88.
    Li, Y., Bastakoti, B.P., Imura, M., Hwang, S.M., Sun, Z., Kim, J.H., Dou, S.X., Yamauchi, Y., 2014b. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly. Chemistry–A European Journal 20, 6027-6032.
    Liang, Z., An, T., Li, G., Zhang, Z., 2015. Aerobic biodegradation of odorous dimethyl disulfide in aqueous medium by isolated Bacillus cereus GIGAN2 and identification of transformation intermediates. Bioresource Technology 175, 563-568.
    Lide, D.R., 2003. CRC handbook of physics and chemistry. CRC Press. Boca Raton.
    Lin, J.H., Wu, S.W., Kuo, C.Y., 2014. Degradation of gaseous 1,2-dichloroethane using a hybrid cuprous oxide catalyst. Process Safety and Environmental Protection 92, 442-446.
    Linsebigler, A.L., Lu, G., Yates Jr, J.T., 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews 95, 735-758.
    Linstrom, P.J., Mallard, W., 2001. NIST Chemistry webbook; NIST standard reference database No. 69.
    Liotta, L.F., 2010. Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental 100, 403-412.
    Liu, R., Ye, H., Xiong, X., Liu, H., 2010. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Materials Chemistry and Physics 121, 432-439.
    Liu, X., Vellanki, B.P., Batchelor, B., Abdel-Wahab, A., 2014. Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs): Effects of process variables and mechanisms. Chemical Engineering Journal 237, 300-307.
    Liu, Y., Liu, J., Lin, Y., Zhang, Y., Wei, Y., 2009. Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceramics International 35, 3061-3065.
    Lu, X., Fan, C., Shang, J., Deng, J., Yin, H., 2012. Headspace solid-phase microextraction for the determination of volatile sulfur compounds in odorous hyper-eutrophic freshwater lakes using gas chromatography with flame photometric detection. Microchemical Journal 104, 26-32.
    Luo, J., Ma, L., He, T., Ng, C.F., Wang, S., Sun, H., Fan, H.J., 2012. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. The Journal of Physical Chemistry C 116, 11956-11963.
    Ma, X., Feng, X., Guo, J., Cao, H., Suo, X., Sun, H., Zheng, M., 2014. Catalytic oxidation of 1, 2-dichlorobenzene over Ca-doped FeO x hollow microspheres. Applied Catalysis B: Environmental 147, 666-676.
    Ma, Y., Zhang, J., Tian, B., Chen, F., Wang, L., 2010. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. Journal of Hazardous Materials 182, 386-393.
    Madarász, J., Brăileanu, A., Crişan, M., Pokol, G., 2009. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS in air: part 2. Precursor from thiourea and titanium (IV)-n-butoxide. Journal of Analytical and Applied Pyrolysis 85, 549-556.
    Mamba, G., Mbianda, X.Y., Mishra, A.K., 2016. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation. Materials Research Bulletin 75, 59-70.
    Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J., Jacoby, W.A., 1999. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Applied and Environmental Microbiology 65, 4094-4098.
    Mars, P., Van Krevelen, D.W., 1954. Oxidations carried out by means of vanadium oxide catalysts. Chemical Engineering Science 3, 41-59.
    Masel, R.I., 2001. Chemical kinetics and catalysis. Wiley-Interscience New York.
    McAdam, K., Veyret, B., Lesclaux, R., 1987. UV absorption spectra of HO2 and CH3O2 radicals and the kinetics of their mutual reactions at 298 K. Chemical Physics Letters 133, 39-44.
    Micic, O.I., Zhang, Y., Cromack, K.R., Trifunac, A.D., Thurnauer, M.C., 1993. Trapped holes on titania colloids studied by electron paramagnetic resonance. The Journal of Physical Chemistry 97, 7277-7283.
    Mo, J., Zhang, Y., Xu, Q., 2013. Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Applied Catalysis B: Environmental 132, 212-218.
    Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R., 2009. Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric Environment 43, 2229-2246.
    Momeni, M.M., Ghayeb, Y., Ghonchegi, Z., 2015. Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. Journal of Solid State Electrochemistry 19, 1359-1366.
    Muraoka, Y., Hiroi, Z., 2002. Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Applied Physics Letters 80, 583-585.
    Naik, B., Parida, K., Gopinath, C.S., 2010. Facile synthesis of N-and S-incorporated nanocrystalline TiO2 and direct solar-light-driven photocatalytic activity. The Journal of Physical Chemistry C 114, 19473-19482.
    Nasir, M., Bagwasi, S., Jiao, Y., Chen, F., Tian, B., Zhang, J., 2014. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method. Chemical Engineering Journal 236, 388-397.
    Nezamzadeh-Ejhieh, A., Banan, Z., 2014. Photodegradation of dimethyldisulfide by heterogeneous catalysis using nanoCdS and nanoCdO embedded on the zeolite A synthesized from waste porcelain. Desalination and Water Treatment 52, 3328-3337.
    Nguyen, M.V., Lee, B.K., 2015. Removal of dimethyl sulfide from aqueous solution using cost-effective modified chicken manure biochar produced from slow pyrolysis. Sustainability 7, 15057-15072.
    Ni, M., Leung, M.K., Leung, D.Y., Sumathy, K., 2007. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 11, 401-425.
    Niu, Y., Xing, M., Zhang, J., Tian, B., 2013. Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol. Catalysis Today 201, 159-166.
    Obee, T.N., Hay, S.O., 1997. Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental Science & Technology 31, 2034-2038.
    Ogawa, H., Abe, A., Nishikawa, M., Hayakawa, S., 1981. Preparation of tin oxide films from ultrafine particles. Journal of the Electrochemical Society 128, 685-689.
    Ourrad, H., Thevenet, F., Gaudion, V., Riffault, V., 2015. Limonene photocatalytic oxidation at ppb levels: Assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation. Applied Catalysis B: Environmental 168, 183-194.
    Pal, U., Garcı́, J., Casarrubias-Segura, G., Koshizaki, N., Sasaki, T., Terahuchi, S., 2004. Structure and optical properties of M/ZnO (M= Au, Cu, Pt) nanocomposites. Solar Energy Materials and Solar Cells 81, 339-348.
    Pastore, M., De Angelis, F., 2015. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation. Journal of the American Chemical Society 137, 5798-5809.
    Patrocinio, A.O.T., Paula, L.F., Paniago, R.M., Freitag, J., Bahnemann, D.W., 2014. Layer-by-Layer TiO2/WO3 thin films as efficient photocatalytic self-cleaning surfaces. ACS Applied Materials & Interfaces 6, 16859-16866.
    Pestana, C.J., Robertson, P.K., Edwards, C., Wilhelm, W., McKenzie, C., Lawton, L.A., 2014. A continuous flow packed bed photocatalytic reactor for the destruction of 2-methylisoborneol and geosmin utilising pelletised TiO2. Chemical Engineering Journal 235, 293-298.
    Piskunov, S., Lisovski, O., Begens, J., Bocharov, D., Zhukovskii, Y.F., Wessel, M., Spohr, E., 2015. C-, N-, S-, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: prediction from first principles. The Journal of Physical Chemistry C 119, 18686-18696.
    Qiao, L., Chen, J., Yang, X., 2011. Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide. Journal of Environmental Sciences 23, 51-59.
    Ras, M.R., Borrull, F., Marcé, R.M., 2008. Determination of volatile organic sulfur compounds in the air at sewage management areas by thermal desorption and gas chromatography–mass spectrometry. Talanta 74, 562-569.
    Razali, M.H., Noor, A.F.M., Yusoff, M., 2015. Co2+ doped TiO2 nanotubes visible light photocatalyst synthesized by hydrothermal method for methyl orange degradation. International Research Journal of Engineering and Technology 2, 92-96.
    Restelli, G., 1993. Dimethylsulphide: Oceans, Atmosphere and Climate (1992). Springer Science & Business Media.
    Reszczyńska, J., Grzyb, T., Sobczak, J.W., Lisowski, W., Gazda, M., Ohtani, B., Zaleska, A., 2015. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Applied Catalysis B: Environmental 163, 40-49.
    Revah, S., Morgan-Sagastume, J.M., 2005. Methods of odor and VOC control. Biotechnology for odor and air pollution control. Springer, pp. 29-63.
    Sahle-Demessie, E., Devulapelli, V.G., 2008. Vapor phase oxidation of dimethyl sulfide with ozone over V2O5/TiO2 catalyst. Applied Catalysis B: Environmental 84, 408-419.
    Sahoo, C., Gupta, A.K., 2015. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light. Journal of Environmental Science and Health, Part A 50, 659-668.
    Santos, H.A., 2014. Porous silicon for biomedical applications. Elsevier.
    Sasikala, R., Shirole, A., Sudarsan, V., Sudakar, C., Naik, R., Rao, R., Bharadwaj, S., 2010. Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2–Pd nanocomposites for hydrogen generation. Applied Catalysis A: General 377, 47-54.
    Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., 1995. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry 85, 247-255.
    Shah, S., Li, W., Huang, C.-P., Jung, O., Ni, C., 2002. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proceedings of the National Academy of Sciences 99, 6482-6486.
    Shie, J.L., Lee, C.H., Chiou, C.S., Chen, Y.H., Chang, C.Y., 2014. Photocatalytic characteristic and photodegradation kinetics of toluene using N-doped TiO2 modified by radio frequency plasma. Environmental technology 35, 653-660.
    Sivakumar, S., Pillai, P.K., Mukundan, P., Warrier, K., 2002. Sol–gel synthesis of nanosized anatase from titanyl sulfate. Materials letters 57, 330-335.
    Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.M., 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 86, 159-165.
    Smet, E., Lens, P., Langenhove, H.V., 1998. Treatment of waste gases contaminated with odorous sulfur compounds. Critical Reviews in Environmental Science and Technology 28, 89-117.
    Song, H., Zhou, G., Wang, C., Jiang, X., Wu, C., Li, T., 2013. Synthesis and photocatalytic activity of nanocrystalline TiO2 co-doped with nitrogen and cobalt (II). Research on Chemical Intermediates 39, 747-758.
    Song, M.Y., Chin, S., Jurng, J., Park, Y.K., 2012. One step simultaneous synthesis of modified-CVD-made V2O5/TiO2 nanocomposite particles. Ceramics International 38, 2613-2618.
    Soni, K.C., Chandra Shekar, S., Singh, B., Gopi, T., 2015. Catalytic activity of Fe/ZrO2 nanoparticles for dimethyl sulfide oxidation. Journal of Colloid and Interface Science 446, 226-236.
    Spurr, R.A., Myers, H., 1957. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry 29, 760-762.
    Steinmiller, E.M., Choi, K.S., 2009. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proceedings of the National Academy of Sciences 106, 20633-20636.
    Sun, H., Liu, H., Ma, J., Wang, X., Wang, B., Han, L., 2008. Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance. Journal of Hazardous Materials 156, 552-559.
    Sun, J., Hu, S., Sharma, K.R., Ni, B.J., Yuan, Z., 2015. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities. Water Research 69, 80-89.
    Sun, Y., Qiu, J., Chen, D., Ye, J., Chen, J., 2016. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway. Journal of Hazardous Materials 304, 543-552.
    Taboada, E., Angurell, I., Llorca, J., 2014. Dynamic photocatalytic hydrogen production from ethanol–water mixtures in an optical fiber honeycomb reactor loaded with Au/TiO2. Journal of Catalysis 309, 460-467.
    Tang, F., Yang, X., 2012. A “deactivation” kinetic model for predicting the performance of photocatalytic degradation of indoor toluene, o-xylene, and benzene. Building and Environment 56, 329-334.
    Tao, Y., Wu, C.Y., Mazyck, D.W., 2006. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration. Chemosphere 65, 35-42.
    Turchi, C.S., Ollis, D.F., 1990. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis 122, 178-192.
    Twesme, T.M., Tompkins, D.T., Anderson, M.A., Root, T.W., 2006. Photocatalytic oxidation of low molecular weight alkanes: observations with ZrO2–TiO2 supported thin films. Applied Catalysis B: Environmental 64, 153-160.
    Umebayashi, T., Yamaki, T., Yamamoto, S., Miyashita, A., Tanaka, S., Sumita, T., Asai, K., 2003. Sulfur-doping of rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first-principles band calculation studies. Journal of Applied Physics 93, 5156.
    USDHHS, 2001. Toxicological profile for 1,2-dichloroethane, Public Health Service Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services Washington, DC.
    U.S. EPA, 2010. Pesticide Fact Sheet: Dimethyl Disulfide. Washington, DC: US Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention.
    Vincent, G., Marquaire, P.M., Zahraa, O., 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. Journal of Hazardous Materials 161, 1173-1181.
    Vu, V.H., Belkouch, J., Ould-Dris, A., Taouk, B., 2009. Removal of hazardous chlorinated VOCs over Mn–Cu mixed oxide based catalyst. Journal of Hazardous Materials 169, 758-765.
    Wang, H., Liu, X., Liu, X., Guan, Q., Huo, P., Yan, Y., 2015. Enhancement of photocatalytic activity on salicylic acid by nonmetal-doped TiO2 with solvothermal method. Desalination and Water Treatment 54, 2504-2515.
    Wang, L., Shang, J., Hao, W., Jiang, S., Huang, S., Wang, T., Sun, Z., Du, Y., Dou, S., Xie, T., 2014a. A dye-sensitized visible light photocatalyst-Bi24O31Cl10. Scientific reports 4.
    Wang, Z., Liu, J., Dai, Y., Dong, W., Zhang, S., Chen, J., 2011. Dimethyl sulfide photocatalytic degradation in a light-emitting-diode continuous reactor: kinetic and mechanistic study. Industrial & Engineering Chemistry Research 50, 7977-7984.
    Wang, Z., Liu, J., Dai, Y., Dong, W., Zhang, S., Chen, J., 2012. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. Journal of Hazardous Materials 215, 25-31.
    Wang, Z., Liu, X., Li, W., Wang, H., Li, H., 2014b. Enhancing the photocatalytic degradation of salicylic acid by using molecular imprinted S-doped TiO2 under simulated solar light. Ceramics International 40, 8863-8867.
    Watanabe, N., Kouchi, A., 2002. Efficient formation of formaldehyde and methanol by the addition of hydrogen atoms to CO in H2O-CO ice at 10 K. The Astrophysical Journal Letters 571, L173.
    Wijngaarden, R.I., Westerterp, K.R., Kronberg, A., Bos, A., 2008. Industrial catalysis: optimizing catalysts and processes. John Wiley & Sons.
    Wu, Y.T., Yu, Y.H., Nguyen, V.H., Lu, K.T., Wu, J.C.-S., Chang, L.M., Kuo, C.W., 2013. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level. Journal of Hazardous Materials 262, 717-725.
    Xian, S., Yu, Y., Xiao, J., Zhang, Z., Xia, Q., Wang, H., Li, Z., 2015. Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101 (Cr) in humid atmosphere. RSC Advances 5, 1827-1834.
    Yang, J., Wang, X., Dai, J., Li, J., 2014. Efficient visible-light-driven photocatalytic degradation with Bi2O3 coupling silica doped TiO2. Industrial & Engineering Chemistry Research 53, 12575-12586.
    Yang, L., Liu, Z., Shi, J., Hu, H., Shangguan, W., 2007. Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde. Catalysis Today 126, 359-368.
    Yang, L., Zhang, Y., Ruan, W., Zhao, B., Xu, W., Lombardi, J.R., 2010. Improved surface‐enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant. Journal of Raman Spectroscopy 41, 721-726.
    Yin, F., Grosjean, D., Seinfeld, J.H., 1986. Analysis of atmospheric photooxidation mechanisms for organosulfur compounds. Journal of Geophysical Research: Atmospheres 91, 14417-14438.
    Yin, F., Grosjean, D., Seinfeld, J.H., 1990. Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development. Journal of Atmospheric Chemistry 11, 309-364.
    Yu, J., Fan, J., Lv, K., 2010. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2, 2144-2149.
    Yu, J., Jimmy, C.Y., Zhao, X., 2002. The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films. Journal of Sol-Gel Science and Technology 24, 95-103.
    Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K., Zhao, J., 2005. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology 39, 1175-1179.
    Yue, L., WANG, H.Q., WU, Z.B., 2007. Characterization of metal doped-titanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxides. Journal of Environmental Sciences 19, 1505-1509.
    Yurish, S., 2012. Modern Sensors, Transducers and Sensor Networks. Lulu. com.
    Zhan, S., Yang, Y., Gao, X., Yu, H., Yang, S., Zhu, D., Li, Y., 2014. Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catalysis Today 225, 10-17.
    Zhang, G., Zhang, Y.C., Nadagouda, M., Han, C., O'Shea, K., El-Sheikh, S.M., Ismail, A.A., Dionysiou, D.D., 2014a. Visible light-sensitized S, N and C co-doped polymorphic TiO 2 for photocatalytic destruction of microcystin-LR. Applied Catalysis B: Environmental 144, 614-621.
    Zhang, H., Liang, Y., Wu, X., Zheng, H., 2012. Enhanced photocatalytic activity of (Zn, N)-codoped TiO2 nanoparticles. Materials Research Bulletin 47, 2188-2192.
    Zhang, K., Wang, X., Guo, X., He, T., Feng, Y., 2014b. Preparation of highly visible light active Fe–N co-doped mesoporous TiO2 photocatalyst by fast sol–gel method. Journal of Nanoparticle research 16, 1-9.
    Zhang, M., An, T., Fu, J., Sheng, G., Wang, X., Hu, X., Ding, X., 2006. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere 64, 423-431.
    Zhang, W., Jia, B., Wang, Q., Dionysiou, D., 2015. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review. Journal of Nanoparticle Research 17, 1-12.
    Zhang, W., Liu, W., Wang, C., 2002. Tribological behavior of sol–gel TiO2 films on glass. Wear 253, 377-384.
    Zhang, W., Song, N., Guan, L.-x., Li, F., Yao, M.-m., 2016. Photocatalytic degradation of formaldehyde by nanostructured TiO2 composite films. Journal of Experimental Nanoscience 11, 185-196.
    Zhang, Y., Yang, R., Zhao, R., 2003. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment 37, 3395-3399.
    Zhao, W., Dai, J., Liu, F., Bao, J., Wang, Y., Yang, Y., Yang, Y., Zhao, D., 2012. Photocatalytic oxidation of indoor toluene: Process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation. Science of the Total Environment 438, 201-209.
    Zhao, Y., Li, C., Liu, X., Gu, F., Du, H., Shi, L., 2008. Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame. Applied Catalysis B: Environmental 79, 208-215.
    Zhou, M., Yu, J., 2008. Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders. Journal of Hazardous Materials 152, 1229-1236.
    Zhu, J., Zheng, W., He, B., Zhang, J., Anpo, M., 2004. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical 216, 35-43.
    Zhuang, H., Gu, Q., Long, J., Lin, H., Lin, H., Wang, X., 2014. Visible light-driven decomposition of gaseous benzene on robust Sn2+-doped anatase TiO2 nanoparticles. RSC Advances 4, 34315-34324.
    Zhuang, H., Zhang, Y., Chu, Z., Long, J., An, X., Zhang, H., Lin, H., Zhang, Z., Wang, X., 2016. Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2. Physical Chemistry Chemical Physics 18, 9636-9644.

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE