| 研究生: |
洪敏翔 Hung, Min-Hsiang |
|---|---|
| 論文名稱: |
離心式風扇最佳幾何形狀之設計 The Optimum Design of Geometric Shapes for a Centrifugal Fan |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 離心式風扇 |
| 外文關鍵詞: | Centrifugal Fan |
| 相關次數: | 點閱:83 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的目的在於利用反算法中之拉凡格式法(Levenberg-Marquardt Method),以提升風量為目標,對離心式風扇的幾何形狀做最佳化設計,並選用套裝數值模擬軟體CFD-RC做為計算及分析的工具。離心式風扇中幾何形狀相當複雜,為了有效率的提高風量,透過靈敏性分析,篩選出對風量影響較大的設計參數,並針對這些參數做最佳化的設計。從結果顯示,利用拉凡格式法反算得到之最佳化風扇,在NACA扇葉翼形、扇葉入風角度以及蝸殼入風口半徑都有明顯改變,為了檢驗反算結果的正確性,利用統計學的觀點,假設一獨立之常變異誤差(Constant-variance Errors)來發展出預測參數99%之可信度邊界(Confidence Bounds),由統計分析的結果顯示,本研究所預測之參數,皆落在於此邊界中;除此之外,透過流場分析比較可以發現,最佳化後的風扇能夠有效改善扇葉及蝸殼出風口的逆流現象,以及提升蝸殼流道的出風速度,風量也較初始風扇提升了約13.6%。
最後,為了驗證數值模擬的正確性,分別將初始參考風扇與最佳化後的風扇利用CNC做出實體,選擇符合AMCA-210-85規範之入口式風洞進行性能量測,並在全無響室中觀察噪音表現。由實驗的結果可以發現,最佳化後的風扇除了風量提升外並可有效降低噪音。
The Objective of this thesis is to utilize the technique of the Levenberg-Marquardt Method (LMM) together with the commercial package CFD-ACE+ in an inverse design problem to estimate the optimal shape of a centrifugal fan based on the desired volume flow rate of air.
The geometry of a centrifugal fan shape is generated using numerous design variables, which enables the completed shape of the fan to be constructed completely. The sensitivity analysis for the design variables is then performed to select only a few effective parameters as our final design variables.
Results show that the shape of NACA airfoil, blade inlet angle (β) and radius of inlet flow (Ri) are sensitive to the design and therefore they are chosen as our design variables. Statistical analysis is also considered to obtain the 99 % confidence bounds for the estimated design variables. The comparisons of the flow patterns between fan blades in the impeller for original and optimal fans indicated that the reverse flow in original fan is indeed severer than that in optimal fan and therefore the airflow rate in optimal fan is thus increased. Besides, the airflow rate can be increased by 13.6 %.
Finally the prototypes of the original and optimized centrifugal fans are fabricated and the fan performance tests are conducted on the basis of the AMCA-210-85 standard to verify the validity of this work. Also, for the noise of fans, the experimental measurement has been carried out in a hemi-anechoic chamber. Experiment results show that by utilizing the fabricated optimal fan, not only the airflow rate can be increased but also the noise of fan can be reduced, as a result, the performance of optimal fan is greatly improved.
1.Eck, B., “Fans : Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans”, Pergamon Press, New York, 1973.
2.Bleier, Frank P., “Fan Handbook, Selection, Application, and Design”, McGraw Hill, 1997
3.Leidel, W., “Einfluss Von Zungenabstand and Zungenradius auf Kennlinie und Gerausch eines Radial Ventilators”, DLR-FB, pp.69-16, 1969.
4.Raj, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”, Journal of Engineering for Power, vol. 103, pp. 393-399, 1981.
5.Lin, S. C., “A Novel F-C Centrifugal Fan Design for Improved Performance”, Department of Mechanical Engineering, Technical Report, Tennessee Technological University, 1982.
6.吳慶財,“前傾式離心風扇之實驗設計”,國立台灣工業技術學院機械工程技術研究所碩士論文,1993年。
7.Howard, J.H.G., and Lennemann, E. “Measured and Predicted Secondary Flows in a Centrifugal Impeller,” ASME, Journal of Engineering for Power, vol. 93, pp. 126 – 132, 1971.
8.McDonald, G.B., Lennemann, E., and Howard, J.H.G., ”Measured and Predicted Flow Near the Exit of a Radial-Flow Impeller,” ASME, Journal of Engineering for Power, vol. 93, pp. 441 – 446, 1971..
9.Abramian, M., and Howard, J.H.G., “Experimental Investigation of the Steady and Unsteady Relative Flow in a Model Centrifugal Impeller Passage,” ASME, Journal of Turbomachinery, vol. 116, pp. 269 –279, 1994.
10.Howard, J.H.G., and Kittmer, C.W., “Measured Passage Velocities in a Radial Impeller With Shrouded and Unshrouded Configurations,” ASME, Journal of Engineering for Power, vol. 97, pp. 207 – 213, 1975.
11.黃家烈,“筆記型電腦冷卻風扇之研究”, 國立台灣科技大學機械工程技術研究所博士論文,2001年。
12.許宏棋,“Pentium 4 筆記型電腦冷卻風扇之實驗研究”,國立台灣科技大學機械工程技術研究所碩士論文,2001 年。
13.楊俊欽,“高性能、低噪音衛浴排風扇之實驗研究”, 國立台灣科技大學機械工程技術研究所碩士論文,2003年。
14.孫鈞瑋,“前傾式離心風機數值與實驗之整合研究”, 國立台灣科技大學機械工程技術研究所碩士論文,2004年。
15.Liu, C.H., Vafidis, C. and Whitelaw, J.H., “Flow Characteristics of a Centrifugal Pump,” ASME Journal of Fluids Engineering, vol.116, pp.303-309, 1994.
16.Wo, A.M. and Bons, J.P., “Flow Physics Leading to System Instability in aCentrifugal Pump,” ASME Journal of Turbomachinery, vol.116, pp.612-620, 1994.
17.陳秉勣,“離心風扇舌尖外形對性能與噪音的影響,”國立成功大學碩士論文,2003。
18.李宗顯,“筆記型電腦散熱模組之數值與實驗整合研究,”國立台灣科技大學碩士論文,2006。
19.黃朝瑋,“雙吸入後傾式離心風機數值與實驗整合研究,”國立台北科技大學碩士論文,2006。
20.Morinushi, K., “The Influence of Geometric Parameters on F-C Centrifugal Fan Noise”, Journal of Vibration, Acoustics, Stress, and Reliability in Design, vol. 109, pp. 227-234, 1987.
21.Dong, R., Chu, S., and Katz, J., “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part A: Technique,” ASME, Journal of Fluid Engineering, vol. 114, pp. 390 – 395, 1992.
22.Dong, R., Chu, S., and Katz, J., “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results,” ASME, Journal ofFluid Engineering, vol. 114, pp. 396 – 403, 1992.
23.Chu, S., Dong, R., and Katz, J., “Relationship Between Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump. Part A: Use a PIV Data to Compute the Pressure Field,” ASME, Journal of Fluid Engineering, vol. 117, pp. 24 – 29, 1995.
24.Chu, S., Dong, R., and Katz, J., “Relationship Between Unsteady Flow,Pressure Fluctuations and Noise in a Centrifugal Pump. Part B: Effects of Blade-Tongue Interactions,” ASME, Journal of Fluid Engineering, vol. 117, pp. 30 – 35, 1995.
25.Dong, R., Chu, S., and Katz, J., “Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure, and Noise in a Centrifugal Pump,” ASME, Journal of Turbomachinery, vol. 119, pp. 506 –515, 1997.
26.廖家堃,“離心式鼓風機之流場與噪音研究,”國立清華大學碩士論文,1997。
27.呂永泰,“鼓風機渦卷殼之設計暨流場與聲場研究 ,”國立清華大學碩士論文,1998。
28.游昌隆,“橫流式風扇之流場與其引發噪音之研究,”國立清華大學碩士論文,2001。
29.Neise, W., and Koopmann, G. H., “The Use of Resonators to Slience Centrifugal Blowers”, Journal of Sound and Vibration, vol. 82, No. 1, pp. 17-27, 1982.
30.Yang ,Y.T., and Peng, H.S.,“ Numerical study of pin-fin heat sink with un-uniform fin height design “International Journal of Heat and 29-30 Mass Transfer, vol. 51, pp. 4788-4796, 2008.
31.Yang ,Y.T., and Peng, H.S.,” Numerical study of the heat sink with un- uniform fin width designs ,“International Journal of Heat and Mass Transfer, vol. 52, pp. 3473-3480, 2009.
32.J. P. Van Doormaal and G. D. Raithby, "Enhancements of the SIMPLE method for predicting incompressible fluid flows," Numerical Heat Transfer, vol. 7, pp. 147-163, 1984.
33.AMCA Standard 210, “Laboratory Method of Testing Fans for Aerodynamic Performance Rating,” Air Movement and Control Association International, Inc.
34.CNS 7129,“聲度表” 中國國家標準,CNS 7129,C7143。