簡易檢索 / 詳目顯示

研究生: 馬志強
Ma, Chih-Chiang
論文名稱: 應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率
Using Biosurfactants to Enhance the Biodegradation Efficiency of Indigenous in Disel Contaminated Soil
指導教授: 鄭幸雄
Jeng, Shing-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 130
中文關鍵詞: 生物界面活性劑柴油生物復育
外文關鍵詞: DGGE, rhamnolipid, surfactin, biodegradation, diesel oil
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Surfactin與rhamnolipid乃兩種不同結構的生物界面活性劑。由本研究中可得到,其二者臨界微胞濃度critical micelle concentration (CMC)相當低,surfactin為35 mg/L;rhamnolipid為52 mg/L。且此兩種生物界面活性劑對柴油乳化能力很強,surfactin在濃度為120 mg/L時可造成柴油58 %的乳化;而rhamnolipid則可在濃度為48 mg/L時即可使柴油62 %乳化。由於以上兩項重要的特性,因此本研究將以此兩種生物界面活性劑添加,探討生物界面活性劑添加濃度、環境中銨氮濃度及pH值,對柴油生物降解效率的影響。

      在surfactin添加濃度方面,在40 mg/L時微生物有最佳的生長情況,比生長速率由未添加的0.041/hr提升至0.055/hr;在40 mg/L組別柴油降解速率可由未添加時20.1 mg TPH-d/L/hr大幅提升至86.7 mg TPH-d/L/hr,提升效果高達四倍。但高濃度的surfactin可在此實驗中明顯看出對微生物生長的抑制,在400 mg/L組別之比生長速率大幅下降至0.009/hr。不同的rhamnolipid添加濃度之下,微生物的生長曲線以添加濃度80及160 mg/L表現最佳,微生物之比生長速率由未添加0.021/hr 提升至0.047/hr;柴油降解速率較未添加20.5 mg TPH-d/L/hr 提升至137.3 mg TPH-d/L/hr,提升效果約為七倍。

      pH對柴油生物降解影響方面,未添加生物界面活性劑時,柴油的降解速率以pH 7.2最佳(63.7 mg TPH-d/L/hr),pH過高或過低皆會導致柴油降解速率下降至40.1 mg TPH-d/L/hr (pH 8.4)及19.7 mg TPH-d/L/hr (pH 5.2)。而當實驗中添加surfactin後微生物受抑制者為pH 5.2,微生物比生長速率從最高0.051/hr (pH 8.4)大幅下降至0.013/hr。pH 5.2時,柴油降解速率也從最高91.7 mg TPH-d /L/hr (pH 8.4)大幅下降至7.2 mg TPH-d/L/hr。而實驗中添加rhamnolipid後柴油降解速率方面最佳表現為pH 6.3-8.4,被抑制者為pH 5.2,柴油降解速率由最高85.7 mg TPH-d/L/hr (pH 7.4)下降至36.2。

      環境中銨氮濃度對柴油生物降解影響方面,當未添加生物界面活性劑時,無論是微生物比生長速率還是柴油降解速率皆在銨氮濃度200-300 mg/L會有最佳的表現。而當實驗添加surfactin(40 mg/L)後,在銨氮濃度超過200 mg/L後微生物比生長速率高達0.057/hr;而當溶液中銨氮濃度不足時 (50 mg/L)微生物比生長速率只有0.035/hr。在添加rhamnolipid組別(50 mg/L),柴油降解速率在銨氮濃度100-300 mg/L表現皆大同小異,約為52.1-65.4 mg TPH-d/L/hr;但當銨氮濃度升至450 mg/L時柴油降解速率便滑落至9.2 mg TPH-d/L/hr。

      在柴油汙染土壤添加生物界面活性劑生物復育試驗中,發現無論是添加surfactin或添加rhamnolipid組別土壤在實驗進行達68天後土壤中柴油殘餘量皆可明顯比控制組來的低。surfactin(40 mg/kg)組土壤中柴油殘餘量約剩餘1655 mg TPH-d/kg;而rhamnolipid(50 mg/kg)組別土壤中殘餘柴油量更是低於250 mg TPH-d/kg。在此時控制組中土壤柴油殘餘量約為4678 mg TPH-d/kg。土壤中初始柴油濃度為6981 mg TPH-d/kg。

      在分子生物檢測(DGGE)方面發現添加rhamnolipid組,菌相明顯較控制組和surfactin組為豐富。且由Marker比對中可得到,無論是控制組或實驗組(添加surfactin、rhamnolipid)的土壤中皆含有可分解柴油的菌株。

      Surfactin and rhamnolipid are two types of biosurfactants with different chemical structures. In this study, we found that both of them owned relatively low critical micelle concentrations (CMC), which were 35 and 52 mg/L for surfactin and rhamnolipid, respectively. Also, both of the two biosurfactants can achieve significantly high emulsification index (E24) which resulted in the emulsification of diesel oils. The addition of 120 mg/L surfactin achieved E24 of 58%, which resulted in the emulsification of 58% diesel oil. However, only 48 mg/L rhamnolipid was needed to achieve the E24 (62%), and 62% of diesel oil was emulsified. Based on the two important characters, relatively CMC and high E24, this study focused on 1) the addition concentrations of the two biosurfactants, 2) ammonia concentrations, and 3) pH values in the environment, in order to investigate the effect of biosurfactants addition on diesel oil biodegradation.

      In the study of adding different concentrations of biosurfactant, when adding different concentrations of surfactin to the diesel contaminated soil solution, the optimal microbial growth rate was attained with 40 mg/L of surfactin. The specific growth rate was increased from 0.041/hr to 0.055/hr, compared with the non-addition group. When adding 40 mg/L of surfactin, the degradation rate was raised from 20.1 mg/L/hr, with the non-addition group, to 86.7 mg/L/hr, which were about four-time improvement in the degradation rates. In spite of this, addition of high concentration of surfactin was found to cause an inhibition of the microbial activity. The specific growth rate dropped to 0.009/hr when 400 mg/L of surfactin was added. When adding different concentrations of rhamnolipid, the microbial growth curve indicated that an optimal bioactivity can be achieved with 80 or 160 mg/L of rhamnolipid addition. Compared with the non-addition group, the specific growth rate was increased from 0.021/hr to 0.047/hr, and the diesel degradation rate was raised from 20.5 to 137.3 mg TPH-d/L/hr. An approximately seven-fold enhancement of the diesel degradation was achieved.

      In the study of pH investigation, with no addition of the biosurfactant, the optimal diesel degradation was 63.7 mg TPH-d/L/hr when pH value was 7.2. Extreme high (8.4) or low (5.2) pH values resulted in relatively low diesel degradation rate, 40.1 and 19.7 mg TPH-d/L/hr, respectively. With the addition of surfactin, at the pH value of 8.4, both of the specific growth rate and the diesel degradation rate reached the optimal. At the pH value of 5.2, the specific growth rate dropped from 0.051/hr (pH 8.4) to 0.013/hr; and the diesel degradation also decreased from 91.7 (pH 8.4) to 7.2 TPH-d mg/L/hr. Similarly, with the addition of rhamnolipid, the highest diesel degradation rate was attained when the pH values were around 6.3-8.4. At pH 5.2, the diesel degradation rate dropped from 85.7 (pH 7.4) to 36.2 TPH-d mg/L/hr。

      In the study of ammonia investigation, with no addition of the biosurfactant, the optimal growth rate and diesel degradation rate were found with the ammonia concentrations of 200-300 mg/L. When adding 40 mg/L of surfactin, the specific microbial growth rate could achieve 0.057/hr with the ammonia concentration f 200 mg/L. Yet, the specific growth rate decreased to 0.035/hr when ammonia concentration was only 50 mg/L. When adding 50 mg/L of rhamnolipid, about equivalent diesel degradation (52.1-65.4 TPH-d mg/L/hr) was reached with the ammonia concentration of 100-300 mg/L. However, when 450 mg/L of ammonia concentration was provided, diesel degradation became significantly low (9.2 mg TPH-d/L/hr).

      In the study of adding biosurfactants to diesel-contaminated soil, it was observed that, with the addition of either surfactin or rhamnolipid, the remained diesel was apparently lower than that in the control set after 68 days operation. With the addition of surfactin (40 mg/kg), the remained diesel in the soil was 1655 TPH-d mg/kg. With the addition of rhamnolipid (50 mg/L), the remained diesel was only lower than 250 mg TPH-d/kg. At the same time, the remained diesel in the control set was around 4678 TPH-d mg/kg which was originally 6981 TPH-d mg/kg.

      In the study of molecular biomonitoring with DGGE, it concluded that with the addition of rhamnolipid, the microbial community was more diverse than that in the control set and in the surfactin addition. Also, in the result of Marker comparison, it indicated the existence of diesel-degrading bacteria in both the experimental and the control sets.

    第一章 前言……………………………………………………………...…………1 第二章 文獻回顧………………………………………………………….………3 2-1 石油碳氫化合物在土壤地下水中流佈………………………………………3 2-1-1 不飽和層 (Unsaturated Zone) ……………………………………………3 2-1-2 毛細層 (Capillary Zone) …………………………………………………5 2-1-3 飽和層 (Saturated Zone) …………………………………………………5 2-2 生物復育………………………………………………………………………6 2-2-1 生物放大及生物刺激…………………………………..…………………6 2-2-2 生物復育之優缺點……………………………………………..…………7 2-2-3 生物復育之影響因子………………………………………..……………8 2-3 柴油之微生物代謝途徑………………………………………………..……11 2-3-1 直鏈烷類碳氫化合物之微生物分解代謝途徑…………………………11 2-3-2 支鏈烷類碳氫化合物之微生物分解代謝途徑…………………………13 2-3-3 烯類碳氫化合物之微生物分解代謝途徑………………………………14 2-3-4 芳香族碳氫化合物之微生物分解代謝途徑……………………………14 2-4 界面活性劑…………………………………………………………..………15 2-4-1 界面活性劑之特性………………………………………………………15 2-4-2 界面活性劑對碳氫化合物生物復育之優缺點…………………………17 2-4-3 界面活性劑種類…………………………………………………………18 2-4-4 界面活性劑於土壤復育上之應用………………………………………19 2-5 生物界面活性劑…………………………………………………..…………20 2-5-1 生物界面活性劑之特性及優點…………………………………………20 2-5-2 生物界面活性劑種類……………………………………………………21 2-5-3 生物界面活性劑提升生物復育機制……………………………………23 2-5-4 生物界面活性劑於生物復育之應用……………………………………25 2-6 Surfactin……………………………………………………...………………27 2-6-1 Surfactin之特性與結構…………………………………………………27 2-7 Rhamnolipid………………………………………………….………………29 2-7-1 Rhamnolipid之特性與結構…………………………………..…………29 2-7-2 Rhamnolipid的形態學……………………………………..……………32 2-7-3 Rhamnolipid在生物復育之應用…………………………..……………33 2-8 分子生物技術在生物復育之應用………………………..…………………35 2-8-1 聚合酵素連鎖反應 (Polymerase chain reaction, PCR) ………..……35 2-8-2 變性梯度明膠電泳法 (Fischer and Lerman, 1979) ……………………36 第三章 實驗材料與方法………………………………………….………………39 3-1 研究材料…………………………………………………..…………………39 3-1-1 surfactin…………………………………………………..………………39 3-1-2 rhamnolipid………………………………………………………………39 3-1-3 柴油分解菌………………………………………………………………39 3-1-4 培養基……………………………………………………………………40 3-1-5 柴油及藥品………………………………………………………………40 3-2 各項水質分析及土樣分析方法及使用儀器………………………..………41 3-3 土壤中菌量計數-平盤計數法 (Plate-counts) …………………...…………42 3-4 掃描式電子顯微鏡 (Scanning electron microscope, SEM)…….……….….43 3-5 分子生物技術……………………………………………………….….……44 3-5-1 總DNA萃取 ……………………………………………………………44 3-5-2 聚合酵素連鎖反應 (Polymerase chain reaction, PCR)…………..….45 3-5-3 變性梯度明膠電泳 (Fischer and Lerman, 1979)……………………….46 3-6 表面張力量測………………………………………………..………………48 3-7 生物界面活性劑乳化指數量測………………………………..……………49 3-8 以批次實驗探討三種因子(生物界面活性劑、pH、銨氮)對柴油生物降解的影響………………………………………………………………..…………50 3-8-1 原生菌液培養……………………………………………………………50 3-8-2 實驗前微生物活化………………………………………………………51 3-8-3 實驗配置…………………………………………………………………51 3-9 柴油汙染土壤添加生物界面活性劑生物復育試驗…………………….….53 第四章 結果與討論………………………………………………….……………57 4-1 生物界面活性劑之基本特性……………………………………..…………57 4-1-1 生物界面活性劑臨界微胞濃度求取……………………………………57 4-1-2 生物界面活性劑於水相中對柴油之增溶實驗…………………………59 4-1-3 水中pH對生物界面活性劑影響……………………….………………60 4-1-4 不同碳源所生產之rhamnolipid乳化能力測試…………..……………62 4-1-5 不同滅菌方式對生物界面活性劑影響…………………………………64 4-2 生物界面活性劑對柴油生物降解影響……………………………..………66 4-2-1 生物界面活性劑濃度對柴油生物降解影響……………………………66 4-2-2 pH值對柴油生物降解影響………………………………..……………74 4-2-3 銨氮濃度對柴油生物降解影響…………………………………………85 4-3 柴油汙染土壤添加生物界面活性劑生物復育試驗…………………..……99 4-3-1 生物界面活性劑對土壤中柴油降解影響………………………………99 4-3-2 生物界面活性劑對土壤中微生物生長影響…………………………..105 4-3-3 生物界面活性劑對土壤pH值影響……………………………………106 4-3-4 生物界面活性劑對土壤中微生物菌相影響………………….……….107 第五章 結論與建議……………………………………………….…..…………113 5-1 結論…………………………………………………………………………113 5-2 建議…………………………………………………………………………114 第六章 參考文獻……………………………………………………...…………115

    Abalos, A., Pinaso, A., Infante, M. R., Casals, M., Garcia, F., Manresa, A., 2001. Physicochemical and antimicrobial properties of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 17: 1367-1371
    Abdul, A. S., Ang, C. C., 1994. In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: phase 2 pilot study. Ground Water.32: 727-734
    Abdul, A. S., and Gibson, T. L., 1991. Laboratory study of surfactant - enhanced washing of polychlorinated biphenyl from sandy material. Environ. Sci. Technol. 25: 665
    Aldrett, S., Bonner, J. S., McDonalds, T. J., Mills, M. A., Autenrieth, R. L., 1997., Degradation of crude oilenhanced by commercial microbialcul tures. In: Proceedings of 1997 InternationalOil Spill Conference. American Petroleum Institute, Washington, DC. 995-996
    Alexander, M., 1999. Biodegradation and Bioremediation .2nd edn.Academic Press, London
    Allen, K. A., Herbert, B. E., Morris, P. J., McDonald, T. J., 1997. Biodegradation of petroleum in two soils: Implications for hydrocarbon bioavailability. In: Alleman, B.C., Leeson, A. (Eds.), In-situ and On-Site Bioremediation, Vol. 5. Battelle Press, Columbus, USA, 629-634
    Amund, O. O., 1996. Utilization and degradation of an ester-based lubricant by Acinetobacter lwoffi. Biodegradation. 7: 91-95
    Ang, C. C. and Abdul, A.S., 1991. Aqueous surfactant washing of residual oil contamination from sandy soil. Ground Water Monitoring Rev. Spring. 121-127
    Angelova, B. and Schmauder, H. P., 1999. Lipophilic compounds in biotechnology- interactions with cells and technological problems. J. Biotechnol. 67: 13-32
    Arima, K., Kakinuma, A., and Tamura, G., 1968. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. 31:488–494.
    Atlas, R. M., 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microb. Rev. 45: 180-209
    Atlas, R. M., (Ed.), 1984. Petroleum Microbiology. Macmillan Publishing Company, New York.
    Atlas, R. M., 1995. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin. 31: 178-182
    Awashti, N., Kumar, A., Makkar, R., Cameotra, S., 1999. Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. ournal of Environmental Science and Health B. 34: 793-803
    Bai Guiyun, Brusseau Mark L., Miller Raina M., 1997. Biosurfactant-enhanced removal of residual hydrocarbon from soil. Contaminant Hydrology. 24: 157-170
    Bailey, J. E., Ollis, D. F., 1986. Biochemical Eng. Fundamentals, 2nd. ed. McGraw-Hill, New York.
    Baker, K. H., Herson, D. S., 1994. Bioremediation. McGraw-Hill, New York
    Banat, I. M., 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation:A Review Department of Biology .Bioresource Technology. 51: 1-12
    Banat, I. M., 1995. Biosurfactants characterization and use in pollution removal ; state of the art ,a review. ACTA Biotechnol. 15: 251-267
    Banat, I. M., Makkar R. S., Cameotra S. S., 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508
    Barahona, L. Molina, Vzquez R. Rodr´ıguez, Velasco M. Hernndez,Jarqu´ın C. Vega, Prez O. Zapata , Cant A. Mendoza, Albores A. 2004. Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Applied Soil Ecology. 27: 165-175
    Beal, R., Betts, W. B., 2000. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Journal of Applied Microbiology. 89: 158-168
    Bellandi, R. (Ed.), 1995. Innovative Engineering Technologies for Hazardous Waste Remediation. Van Nostrand Reinhold, New York, 105-120
    Bernheimer, A. W., and L. S. Avigad., 1970. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol. 61: 361-369
    Beven L., Wroblewski H., 1997. Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes Bven, L.; Wrblewski, H. Res. Microbiol. 148: 163-175
    Bogan, B.W., Lamar, R.T., 1996. PAH degrading capabilities of P. laevis HHB-1625 and its extracellular ligninolytic enzymes. Applied and Environmental Microbiology. 62: 1597-1603
    Bossert, I., Bartha, R., 1984. The fate of petroleum in soil ecosystems. In: Atlas, R.M. (Ed.), Petroleum Microbiology. Macmillan Publishing Company, New York, 435-476
    Bossert, I. D., Compeau, G. C., 1995. Cleanup of petroleum hydrocarbon contamination in soil. In: Young, Y.L., Cerniglia, C.E. (Eds.), Microbial transformation and biodegradation of toxic organic chemicals. Wiley-Liss, New York, USA, 77-125
    Bundy, J. G., Paton, G. I., Campbell, C. D., 2002. Microbial communities in different soils types do not converge after diesel contamination. Appl. Environ. Microbiol. 92: 276-288
    Carrillo Carmen, Teruel Jose´ A., Aranda Francisco J., Ortiz Antonio., 2003. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta. 1611: 91-97
    Cassidy D. P., Irvine R. L., 1997. Biological treatment of a soil contaminated with diesel fuel using periodically operated slurry and solid phase reactors. Wat. Sci. Tech. Vol1. 185-192
    Cerniglia C. E., 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 3: 351-368
    Chaineau, C. H., Morel, J. L., Oudot, J., 1995. Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. Environ. Sci. Technol. 29. 1615-1621
    Chakicherla Anu and Hansen J. Norman., 1995. Role of the Leader and Structural Regions of Prelantibiotic Peptides as Assessed by Expressing Nisin-Subtilin Chimeras in Bacillus subtilis 168, and Characterization of their Physical, Chemical, and Antimicrobial Properties THE JOURNAL OF BIOLOGICAL CHEMISTRY. Vol. 270, No. 40 ,23533–23539
    Cheung pui-yi and Kinkle Brain K., 2001. Mycobacterium Diversity and Pyrene Mineralization in Petroleum-Contaminated Soils. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. May Vol. 67, No. 5, 2222-2229
    Churchill, S. A., Griffin, R. A., Jones, L. P., Churchill, P. F., 1995. Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant. Journal of Environmental Quality. J. Environmental Quality. 24: 19-28
    Churchill, P. F., Churchill, S. A., 1997. Surfactant-enhanced biodegradation of solid alkanes. J. Environ. Sci. Health A. 32: 293-306
    Cooney, J. J., 1984. The fate of petroleum pollutants in freshwater ecosystems. In: Atlas, R.M. (Ed.), Petroleum Microbiology. Macmillan Publishing Company, New York, 355-398
    Cooper, D. G., and Zajic J. E., Surface-active compounds from microorganisms. Adv. Appl. Microbiol. 26: 229-253
    Cooper, D. G., 1986. Biosurfactants. Microbiological Science. 3: 145-149
    Dave, H., Ramakrishna, C., Bhatt, B. D., Desai, J. D., 1994. Biodegradation of slop oil from a petroleum industry and bioreclamation of slop-oil contaminated soil. World Journal of Microbiology and Biotechnology. 10: 653-656
    DESAI JITENDRA D. AND BANAT IBRAHIM M. 1997. Microbial Production of Surfactants and Their Commercial Potential. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS. Mar. 47-64
    Dibble, J. T., Bartha, R., 1979. Effect of environmental parameters on biodegradation of oil sludge. Appl. Environ. Microbiol. 37: 729-739
    Edwards D. A., Luthy R. G. and Liu Z., 1991. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25: 127
    Eliseev, S.A., Vildanova-Martisishin, R., Shulga, A., Shabo, A.,Turovsky, A., 1991. Oil washing bioemulsifier produced by Bacillussp. Microbiology Journal. 53: 61
    Falatko, D. M., Novak, J. T., 1992. Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Environ. Res. 64. 163-168
    Fietcher, A., 1992. Biosurfactants :moving toward industrial application. Trends in Biotech. 10: 208-217
    Foght, J. M., Westlake, D. W. S., 1987. Biodegradation of hydrocarbons in freshwater. In: Vandermeulen, J.H., Hrudey, S.E. (Eds.),Oilin Freshwater: Chemistry, Biology, Countermeasure Technology. Pergamon Press, New York, 217-230
    Forsyth, J. V., Tsao, Y. M., Blem, R. D., 1995. Bioremediation: when is augmentation needed. In: Hinchee, R.E. et al. (Eds.), Bioaugmentation for Site Remediation. Battelle Press, Columbus, OH,. 1–14
    Fountain, J. C., Starr, R. C., Middleton, T., Beikirch, M., Taylor, C., Hodge, D., 1996. A controlled field test of surfactant-enhanced aquifer remediation. Ground Water. 34: 10-916
    Fredrickson J. K., & Balkwill D. L., 1998. Sampling and enumeration techniques. In: Burlage R S, Atlas R, Stahl D, Geesey G & SaylerG (Eds) Techniques in Microbial Ecology (pp 239–254). Oxford University Press NY
    Geerdink M. J., van Loosdrecht M. C. M., & Luyben K. C. A. M., 1996. Biodegradability of diesel oil. Biodegradation .7: 73-81
    Georgiou G., Lin S., & Sharma M. M., 1992. Surface active compounds from microorganisms. Bio/Tech. 10: 60-5
    Gestela Kristin Van, Mergaert Joris, Swings Jean, 2003. Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environmental Pollution. 125: 361-368
    Gilkey J. C., Lamparski H., Retterer J. and Miller R. M., 1995. Electron microscopy of rhamnolipid(biosurfactant)morphology: effect of pH, cadmium and octadecane
    Biochimica et Biophysica Acta. 1418
    Grau Alicia, Fernandez Juan C. Gomez, Peypoux Franc, oise, Ortiz Antonio., 1999. A study on the interactions of surfactin with phospholipid vesicles Biochimica et Biophysica Acta. 1418
    Guerra-Santos, L. H., Kappeli O., and Flechter A., 1986. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24: 443–448.
    Guerra-Santos, L. H., Ka¨ ppeli, O., Fiechter, A., 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon sources. Applied and Environmental Microbiology. 48: 301-305
    Halden R. U., and Dwyer D. F., 1997. Biodegradation of dioxin-related compounds: A review. Bioremediation J. 1: 11-25
    Hayes M. E., Nesyau E., Hrebenar K. R., 1986. Microbial surfactants. Chemtech. 16: 239-245
    Heerklotz H., Seelig J., 2001. Heiko Heerklotz and Joachim Seelig Detergent-Like Action of the Antibiotic Peptide Surfactin on Lipid Membranes. Biophys. J. 81: 1547-1554
    Herman, D. C., Artiola, J. F., Miller, R. M., 1995. Removal of cadmium, lead and zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology. 29: 2280-2285
    Herman, D.C., Zhang, Y., Miller, R.M., 1997. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl. Environ. Microbiol. 63: 3622-3627
    Hisatsuka K., Nakahara T., Sano N., Yamada K., 1971. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem. 35: 686-692
    Hiraoka H., Asaka O., Ano T., Shoda M., 1992. Characterization of Bacillus subtilis RB14, coproducer of peptide antibiotics iturin A and surfactin. J Gen Appl Microbiol. 38: 635-640
    Hitsatsuka, K., Nakahara, T., Sano, N., Yamada, K., 1971. Formation of a rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agricultural and Biological Chemistry. 35: 686-692
    Huesemann, M. H., Moore, K. O. J., 1993. Compositional changes during landfarming of weathered Michigan crude oil contaminated soil. J. Soil. Contam. 2: 245-264
    Hudak Andrew J., Cassidy Daniel P., 2004. Stimulating In-soil Rhamnolipid Production in a Bioslurry Reactor by Limiting Nitrogen
    Huesmann, M. H., 1997. Incomplete hydrocarbon biodegradation in contaminated soils: Limitations in bioavailability or inherent recalcitrance? Biorem. J. 1: 27-39
    Humphries, M., Jaworzyn F., and Cantwell J. B., 1986. The effect of a range of biological polymers and synthetic surfactants on the adhesion of a marine Pseudomonas sp. strain NCMB 2021 to hydrophilic and hydrophobic surfaces. FEMS Microbiol. Lett. 38: 299-308
    Imai Y., Sugino H., Takeshi, Takinuma A., 1971. Hypo-cholesterolemic e€ect of surfactin, a novel bacterial peptide lipid. Takeda Kenkyusho Ho. 30: 728-734
    Ishigami Y., Osman M., Nakahara H., Sano Y., Ishiguro R., Matsumoto M., 1995. Preparation and characterization of biodegradable poly(isobutylcyano acrylate) nanoparticles with the surface modified by the adsorption of proteins Olivier, J.-C.; Vauthier, C.; Taverna, M.; Ferrier, D.; Couvreur, P. Colloids Surf. 4: 349-356
    Ito, S., and Inoue S., 1982. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl. Environ. Microbiol. 43: 1278-1283
    Itoh S., Honda H., Tomita F., Suzuki T., 1971. Rhamnolipids pro-duced by Pseudomonas aeruginosa grown on n-paran. J An-tibiotics (Tokyo). 24: 855-859
    Jackson, A. W., Pardue, J. H., Araujo, R., 1996. Monitoring crude oil mineralization in salt marshes: Use of stable carbon isotope ratios. Environ. Sci. Technol. 30: 1139-1144
    Jackson, W. A., Pardue, J. H., 1999. 109, 343–355. 1999. Potentialfor enhancement of biodegradation of crude oilin Louisiana salt marshes using nutrient amendments. Water, Air, Soil Pollut. 109: 345-355
    Jarvis, F. G., and Johnson M. J., 1949. A glycolipid produced by Pseudomonas aeruginosa.
    Javaheri M., Jenneman G. E. McInnerey M. J., Knapp R. J., 1985. Anaerobic production of a biosurfactant by Bacillus licheniformis. Appl. Environ. Microbiol. 50: 698-700
    Jorgensen K. S., Puustinen1 J., Suortti A. M., 2000. Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution. 107. 245-254
    Jos´e L. R. Gallego, Jorge Loredo, Juan F. Llamas, Fernando V´azquez & Jes´us S anchez, 2001. Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation. 12: 325-335
    Kakinuma A., Ouchida A., Shima T., Sugino H.,Isono M., Tamura G., Arima K., 1969. Confirmation of the structure of surfactin by mass spectrometry. Agr. Biol. Chem. 33: 1669-1672
    Kameda Y., Matsui K., Hisato K., Yamada T., Sagai H., 1972. An-titumor activity of Bacillus natto. III. Isolation and character-ization of a cytolytic substance on Ehrlich ascites carcinoma cells in the culture medium of Bacillus natto KMD 1126. Chem Pharm Bull. 20: 1551-1553
    Kampfer, P., Steiof, M., Dott, W., 1991. Microbial characterzation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb. Ecol. 21: 227-251
    Kanga, S. H., Bonner, J. S., Page, C. A., Mills, M. A., Autenrieth, R. L., 1997. Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environmental Science and Technology. 31: 556-561
    Kappeli, O., and W. R. Finnerty., 1979. Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J. Bacteriol. 140: 707-712
    Kile D. E. and Chious C. T., 1989. Water solubility enhancement of DDT and trichlorobenzene by some surfactants below and above the critical micelle concertration Environ. Sci. Technol. 23: 832
    Kimball S. L., 1992. Surfactant-enchanced soil flushung:an overview of an in situ remedial technology for soils contaminated with hydrophobic hydrocarbons. In: Kostecki P.T.,Calabrese E. J.,Bonazountas M.(Eds.)Hydrocarbon Contaminated Soil Vol II. Lewis Publishers, Boca Raton.
    Kirchmann, H., Ewnetu, W., 1998. Biodegradation of petroleumbased oil wastes through composting. Biodegradation. 9: 151-156
    Kitamoto D.,Yanagishita H., Shinbo T., Nakane T., Kamisava C. & Nakahara T., 1993. Surface-active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida anterc-tica. J. Biotech. 29: 91-96
    Klevens, H. B., 1954. Solubilization of polycyclic hydrocarbons. J. Phys. Colloid Chem. 54: 283-298
    Knox, R. C., Shiau, B. J., Sabatini, D. A., Harwell, J. H., 1999. Field demonstration studies of surfactant enhanced solubilization and mobilization at Hill AFB, Utah. In: Brusseau, M., Sabatini, D., Gierke, J., Annable, M. Eds., Innovative Subsurface Remediation: Field Testing of Physical, Chemical, and Characterization Technologies. ACS Symp. Ser., vol. 725. Oxford Univ. Press, Washington, DC, 49-63
    Lal B., & Khanna S. J., 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. Bacteriol. 81: 355-362
    Lang, S., and F. Wagner., 1987. Structure and properties of biosurfactants Biosurfactants and biotechnology. 21-47
    Lang S., Wullbrandt D., 1999. Rhamnose lipids- biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol. 51: 22-32
    Leahy, J. G., olwell., 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54. 305-315
    Liu Wei and Hanseng J. Norman., 1992. Enhancement of the Chemical and Antimicrobial Properties of Subtilin by Site-directed Mutagenesis. THE JOURNAL OF BIOLOGICAL CHEMISTRY. Vol.267,No. 35. 25078-25085
    Liebega Elizabeth Ward, Cutrightb Teresa J., 1999, The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. International Biodeterioration & Biodegradation. 44: 55-64
    Lucas Ruberto, Susana C. Vazquez, Walter P. Mac Cormack., 2003. E ectiveness ofthe natural bacterial #ora, biostimulation and bioaugmentation on the bioremediation ofa hydrocarbon contaminated Antarctic soil. International Biodeterioration & Biodegradation. 52. 115-125
    MARGESIN R. AND SCHINNER F., 2001. Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July, 3127-3133
    Margesin, R., Zimmerbauer, A., Schinner, F., 2000, Monitoring of bioremediation by soil biological activities. Chemosphere. 40. 339-346
    McCray, J.E., Brusseau, M. L., 1998, Cyclodextrin-enhanced in-situ flushing of multiple-component immiscible organic liquid contamination at the field scale: mass-removal effectiveness. Environ. Sci. Technol. 32: 1285-1293
    McCray John E., Bai Guiyun, Maier Raina M., Brusseau, Mark L., 2001 .
    Biosurfactant-enhanced solubilization of NAPL mixtures. Journal of Contaminant Hydrology. 48: 45-68
    McMillen, S. J., Requejo, A. G., Young, G. N., Davis, P. S., Cook, P. N., Kerr, J. M., Gray, N. R., 1995, Bioremediation potential of crude oil spilled on soil. , In: Hinchee, R.R., Brokman, F.J., Vogel, C.M. (Eds.), Microbial Process for Bioremediation. Battelle Press, Columbus, USA. 91
    Mercer, J. W., Cohen, R. M., 1990, A review of immiscible fluids in the subsurface: properties, models, remediation, and characterization. J. Contam. Hydrol. 6: 107-163
    Miller, R. M., 1995, Surfactant-enhanced bioavailability of slightly soluble organic compounds. In: Skipper, H.D., Turco, R.F. (Eds.), Bioremediation: Science and Applications. Science Society of America, Soil Madison, WI, 322-354
    Mor´an1 Ana C., Olivera Nelda, Commendatore Marta, Esteves Jos´e L. & Sieriz Faustino., 2000. Enhancement of hydrocarbon waste biodegradation by addition of a
    biosurfactant from Bacillus subtilis O9. Biodegradation. 11: 65-71
    Morgan, P., and R. J. Watkinson., 1989 . Hydrocarbon degradation in soils and methods for soil biotreatment. Crit. Rev. Biotechnol. 8: 305-333
    Morikawa M., Daido H., Takao T., Murata S., Shimonishi Y., Imanaka T., 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38.M Morikawa, H Daido, T Takao, S Murata, Y Shimonishi, and T ImanakaJ Bacteriol. J. Bacteriol. 175: 6459-6466
    Morikawa Masaaki, Hirata Yoshihiko, Imanaka Tadayuki., 2000. A study on the structure^function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta. 1488: 211-218
    Mulligan C. N., Yong R. N., Gibbs B. F., 2001. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology. 60: 371-380
    Mulligan Catherine N., 2005. Environmental applications for biosurfactants. Environmental Pollution. 133: 183-198
    NationalAcademy of Sciences, 1985, Oil in the Sea: Inputs, Fates and Effects. NationalAcademy Press, Washington, DC. Neralla, S., Write, A., Weaver, R.W., 1995. Microbial inoculants
    Namkoong, W., Hwang, E.-Y., Park, J.-S., Choi, J.-Y., 2002, Bioremediation of diesel-contaminated soil with composting. Environmental Pollution. 119: 23-31
    Nocentini, M., Pinelli, D., Pasquali, G., Fava, F., Prandi, A., 1997. Biotreatability and feasibility studies for a bioremediation process of a kerosene contaminated soil. In: Verachtert, H., Verstraete, W. (Eds.), Proceedings of International Symposium Environmental Biotecnology, Vol. 2. Technologisch Instituut, Antwerpen, Belgium,
    pp. 307-310.
    Nocentini, M., Pinelli, D., Pasquali, G., Fava, F., Prandi, A., 1998, Biotreatability and feasibility tests for a bioremediation process: A case study for a kerosene contaminated soil. Annali di Chimica. 88: 177-187
    Nocentini M., Pinelli D., Fava F., 2000, Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem. Chemosphere. 41: 1115-1123
    Noordman Wouter H., Wachter Johann H.J., Boer Geert J. de, Janssen Dick B., 2002.The enhancement by surfactants of hexadecane degradation by Pseudomonas a eruginosa varies with substrate availability. Journal of Biotechnology. 94: 195-212
    Oberbremer, A., Hurtig R. Muller, and Wagner F., 1990. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32: 485-489
    Ohno Akihiro, Ano Takashi, and Shoda Makoto., 1995. Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. Journal of Fermentation and Bioengineering Vol.80, No. 5. 517-519
    zdemir G., Peker S., Helvaci S. S., 2004. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2 Colloids and Surfaces A: Physicochem. Eng. Aspects. 234: 135–143
    Parra, J. L., Guinea J., Manresa M. A., Robert M., Mercade M. E., Comelles F., and Bosch M. P., 1989. Chemical characterization and physicochemical behaviour of biosurfactants. J. Am. Oil Chem. Soc. 66: 141-145
    Park, A. J., Cha, D. K., Holsen, T. M., 1998, Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environ. Res. 70. 351-355
    Pennell K. D., Abriola L. M., 1993. Surfactant enhanced solubilization of residual dodecane in soil columns.1.Experimental investigation. Environ. Sci. Technol. 27. 2332
    Peypoux F., Bonmatin J. M., Wallach J., 1999. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechno. 51. 553-563
    Pinelli, D., Nocentini, M., Fava, F., 1999, In-Situ bioremediation of a soil contaminated by mineral oil: A case study. n: Alleman, B.C., Leeson, A. (Eds.), In Situ Bioremediation of Petroleum Hydrocarbon and other Organic Compounds, Proceedings of the Fifth International In Situ and On-Site Bioremediation Symposium, Vol. 5. Battelle Press, Columbus, USA, 313-318
    Providenti M. A., Lee H. & Trevors J. T., 1993. Selected factors limiting the microbial degradation of recalcitrant compounds. J. Ind.Microbiol. 12: 379-395
    Rahman K. S. M., Banat I. M., Thahira J., Thayumanavan Tha., L. P., 2002. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Biotech. 81: 25-32
    Ramstad, S., Sveum, P., 1995. Bioremediation of oil-contaminated shorelines: effects of different nitrogen sources. In: Hinchee, R.E. et al. (Eds.), Applied Bioremediation of Petroleum Hydrocarbons. Battelle Press, Columbus, OH, 415-422
    Rosen M. T. 1989. Surfactants and Interfacial Phenomena. Wiley. 122
    Rosenberg, E., 1992, The hydrocarbon-oxidizing bacteria. In: Balows, A., Tru per, H.P., Dworkin, M., Harder, W., Schleifer, K.-H. (Eds.), The Prokaryotes.Springer-Verlag, New York, 446-459
    Rosenberg, E., A. Gottlieb, and M. Rosenberg., 1983. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect. Immun. 39: 446-459
    Rosenberg E., Ron, E.Z., 1996, Bioremediation of petroleum contamination. In: Crawford, R.L., Crawford, D.L. (Eds.),Bioremediation: Principles and Applications. Cambridge University Press, UK, 100-124
    Rosenberg E., & Ron E., 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154-162
    Rouse, D. J., Sabatini D. A., Suflita J. M. & Harwell J. H., 1994. Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Sci. Technol. 24: 325-370
    Sabatini, D. A., Knox, R. C., Harwell, J. H., 1996. Surfactant-Enhanced DNAPL Remediation: Surfactant Selection, Hydraulic Efficiency, and Economic Factors, Environmental Research Brief, EPAr600rS-96r002, U.S. Environmental Protection Agency, Ada, OK.
    Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Jackson, L. M. R., Vipond, T. E., Western, M. M., Wisniewwski, H. L., 1997, Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Technol. 31: 1769-1776
    Sandrin C., Peypoux F., & Michel F., 1990. Coproduction of surfactin and iturin A,lipopeptides with surfactant and antifungal properties, by Bacillus subtilis Biotech. Appl. Biochem. 12. 370-375
    Shreve, G. S., Inguva, S., Gunnan, S., 1995. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Molecular and Marine Biology and iotechnology. 4: 331-337
    Singer, M. E., Finnerty, W. R., 1984, Microbialmetabol ism of stratchain and branched alkanes. In: Atlas, R.M. (Ed.), Petroleum Microbiology. Macmillan Publishing Company, New York, 1-60
    Song, H.-G., Bartha, R., 1990, Effect of jet fuel spills on the microbial community of soil. Applied and Environmental Microbiology. 56: 652-656
    Sugiura, K., Ishihara, M., Shimauchi, T., Harayama, S., 1997. Physicochemical properties and biodegradability of crude oil. Environ. Sci. Technol. 31: 45-51
    Sutherson, S. S., 1997, Remediation Engineering: Design Concepts. CRC Press, Boca Raton.
    Syldatk C., Lang S., Wagner F., Wray V., Witte L., 1985. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch. 40: 51-60
    Syldatk C., Lang S., Matulovic U., Wagner F., 1985. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Nat-urforsch. 40: 61-67
    Thimon L., Peypoux F., Maget-Dana R., Roux B., & Michel G., 1992. Interactions of bioactive lipoprtides iturin A and surfaction from Bacillus subtilis .Biotech. Appl. Biochem. 16: 144-151
    Thimon, L., Peypoux, F., Michel, G., 1992. Interactions of surfactin, a biosurfactant from Bacillus subtilis with inorganic cations. Biotechnology Letters. 14: 713-718
    Towner, K. J., Bergogne-Berezin, E., Fewson, C. A., 1991, Acinetobacter: Portrait of a genus. In: Towner, K.J., Bergogne-Berezin, E., Fewson, C.A. (Eds.), The Biology of Acinetobacter Plenum Publications, New York, 1-24
    Travis, M. D., 1990. Bioremediation of Petroleum Spills in Arctic and Subarctic Environments: A Feasibility Study. US Department of Commerce, Report No. AK-RD-90-12
    Tsukagoshi N., Tamura G., Arima K., 1970 A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. I. The e€ects of surfactin on Bacilllus megaterium KM. Biochim Biophys Acta 196: 204-210,211-214
    Venosa, A. D., Suidan, M. T., Wrenn, B. A., Strohmeier, K. L., Haines, J. R., Eberhart, B. L., King, D., Holder, E., 1996, Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Technol. 30: 1764-775
    VENOSA ALBERT D., & ZHU XUEQING, 2003. Biodegradation of Crude Oil Contaminating Marine Shorelines and Freshwater Wetlands. Spill Science & Technology Bulletin, Vol. 8, No. 2, 163-178
    VOLLENBROICH DIRK, PAULI GEORG, O¨ ZEL MUHSIN, AND VATER JOACHIM, 1997, Antimycoplasma Properties and Application in Cell Culture of Surfactin, a Lipopeptide Antibiotic from Bacillus subtilis, APPLIED AND ENVIRONMENTAL MICROBIOLOGY Jan. 44-49
    Vollenbroich D., O¨ zel M., Vater J., Kamp R. M., Pauli G., 1997. Mechanism of Inactivation of Enveloped Viruses by the Biosurfactant Surfactin fromBacillus subtilis Vollenbroich, Dirk; zel, Muhsin; Vater, Joachim; Kamp, Roza Maria; Pauli, Georg. Biologicals. 25: 289-297
    Volkering, F., Breure, A. M., Rulkens, W. H., 1998, Microbiological aspects of surfactant use for biological soil remediation. Biodegradation. 8: 401-417
    Wan Namkoonga,*, Eui-Young Hwangb, Joon-Seok Parka, Jung-Young Choic., 2002. Bioremediation of diesel-contaminated soil with composting. Environmental Pollution. 119: 23-31
    Wang, Z., Fingas, M., Sergey, G., 1995, Chemical characterization of crude oil residues from an Arctic beach by GC/MS and GC/FID. Environ. Sci. Technol. 29. 2622-2631
    Warhurst, A. M., Fewson, C.A., 1994, Biotransformations catalyzed by the genus Rhodococcus. CRC Critical Reviews in Biotechnology. 14: 29-73
    West C. C., Harwell J. H., 1992, Surdfactant and subsurface remediation Environ. Sci. 26: 2324-2330
    Williamson, D.G., Loehr, R.C., Kimura, Y., 1997, Measuring release and biodegradation kinetics of aged hydrocarbons from soils. In: Alleman, B.C., Leeson, A. (Eds.), In-situ and On-Site Bioremediation, Vol. 5. Battelle Press, Columbus, USA, 605-610
    Yamaguchi M., Sato A., Yukuyama A., 1976. Microbial production of sugar-lipids.
    Chem Ind. 4: 741-742
    Yuste L., Corbella M. E., Turiegano M. J., Karlson U., Puyet A., & Rojo F., 2000. Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol. Ecol. 32: 69-75
    Zhang, Y., Miller, R. M., 1994. Effect of a Pseudomonas Rhamnolipid Biosurfactant on Cell Hydrophobicity and Biodegradation of Octadecane. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. June. 2101-2106
    Zhang, Y., Miller, R. M., 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology. 58: 3276-3281
    Zobell, C. E., 1946. Action of microorganisms on hydrocarbons. Bacteriol. Rev. 10. 1-49
    Zylstra, G. J., Maier, W. J., Miller, R. M., 1992. In: Landisch, M., Bose, A. (Eds.), Harnessing Biotechnology for the 21st Century. ACS, Washington DC, 68-72
    吳春生(2002),以生物曝氣法整治受地下儲槽洩漏之石化系有機污染物模場研究。國立中山大學環境工程研究所碩士論文。
    方瑋寧(2002),MTBE好氧分解之可行性研究。國立中山大學環境工程研究所碩士論文。
    梁經傑(1197),受污染土壤現地生物復育及其分解之基質交應研究。國立中興大學環境工程研究所碩士論文。
    林進財(2001),以健康風險評估訂定油污染場址之整治目標。國立中山大學環境工程研究所碩士論文。
    吳智輝(2004),對重金屬與酚之毒理學興生物復育研究。國立成功大學化學工程學系碩士論文。
    王志啠(2000),陰離子及複合(陰離子/中性)界面活性劑系統對BTEX污染土壤復育效率之研究。國立中山大學環境工程研究所碩士論文。
    莊晟榜(2002),Tween系列界面活性劑對微生物降解碳氫化合物之影響。私立中原大學化學工程學系碩士論文。
    陳谷汎(2001),以生物復育法整治2,4-二氯酚污染之地下水。國立中山大學環境工程研究所碩士論文。
    吳美慧(2003),芳香族碳氫化合物在非水相液體與水中分佈之行為之研究。國立高雄師範大學生物科學研究所碩士論文。
    恭旭(2000),利用界面活性劑與PAHs 分解菌處理廢水中PAHs之研究。國立中山大學海洋環境及工程學系碩士班碩士論文。
    游宗霖(2003),以純化菌種Candida viswanathii 處理海水中柴油多環芳香烴之研究。國立中山大學海洋環境及工程學系碩士班碩士論文。
    陳鴻易(2003),以16S rDNA分析法監測石油污染土壤中微生物相之變化。國立中山大學生物科學學系(研究所)碩士論文。
    潘銓泰(2001),生物復育技術處理砂岸油污之研究。國立中山大學海洋環及工程學系碩士班碩士論文。
    蘇冬冬(2001),海洋油污染分解細菌之研究。國立海洋大學漁業科學學系碩士論文。
    謝文凱(2004),界面活性劑對油污染土壤現地復育生物通氣法之影響。國立學林科技大學環境與安全工程研究所碩士論文。
    詹武忠(2003),非離子界面活性劑對生物濾床去甲苯之影響。私立中華大學土木工程學系碩士班環工組碩士論文。
    周建良(2005),醣脂類生物界面活性劑rhamnolipid醱酵基質最適化及生產策略之研究。國立成功大學化學工程系碩士論文。

    下載圖示 校內:2006-09-02公開
    校外:2006-09-02公開
    QR CODE