簡易檢索 / 詳目顯示

研究生: 程紹桓
Cheng, Shao-Huan
論文名稱: 複材機翼材料常數之線上量測
On-Line Measurement of Material Properties for Composite Wing Structures
指導教授: 胡潛濱
Hwu, Chyanbin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 93
中文關鍵詞: 複材機翼材料常數反向問題線上類神經網路
外文關鍵詞: inverse analysis, artifical neural network, on-line, composite wing structure, material property
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一般結構材料在長年使用下,經風吹雨淋、太陽曝曬等外在因素可能導致材料的退化。所以在安全考量下,如何在不破壞結構本體的前提下,檢查這些材料本身的性質是一件非常要緊的事。本文乃利用反向問題的概念,先利用Hwu and Gai(2003)所發展的機翼模型與有限元素法軟體-ANSYS,得出自然頻率和靜態應變與材料常數之關係訓練類神經網路;如此即可從埋設在機翼結構物的感測器得到自然頻率與應變值,配合訓練好的類神經網路,可以反算當時結構物的彈性係數。這樣一來便可藉由材料常數的改變迅速得知機翼結構之安全性以避免災害的產生。

      Generally, load-carrying members of structures will encounter degeneration of material properties in changing service environments. To improve the safety of structure, it is necessary to examine material properties of structures in non-destructive way. In this thesis, we employ the concept of inverse analysis. The detectors of the inverse problems are the natural frequencies and static strains. The information about the relations between detectors and material properties can be obtained by analytical solution (Hwu and Gai,2003) and commercial finite element software ANSYS. Based on these data, we can train artificial neural networks to determine elastic properties of composite wing structures with sensors embedded into structures. To prevent accidents we hope the safety of wing structures can be realized by changes of material properties.

    摘要 英文摘要 目錄..................................................i 表目錄................................................iii 圖目錄................................................iv 符號說明..............................................vi 第一章 緒論.......................................1 1.1 前言..........................................1 1.2 文獻回顧......................................2 第二章 正向問題...................................4 2.1 複材機翼之自然振動理論模式....................4 2.1.1基本假設與結構模擬.......................4 2.1.2運動方程式與邊界條件.....................8 2.1.3機翼結構之自然振動分析...................11 2.2 複材機翼結構之有限元素模擬....................13 2.2.1分析流程.................................13 2.2.2分析比較.................................15 第三章 反向問題-類神經網路........................16 3.1 倒傳遞網路....................................16 3.1.1基本架構.................................17 3.1.2訓練法則.................................18 3.2 反算模型之建立................................20 3.2.1訓練資料之取得...........................21 3.2.2網路架構與參數選取.......................23 3.2.3網路測試.................................24 第四章 實驗方法...................................26 4.1 複材機翼之製作過程............................26 4.1.1實驗設備.................................26 4.1.2製作過程.................................27 4.2 複材機翼之自然振動實驗及靜態應變量測..........28 4.2.1實驗設備.................................28 4.2.2自然振動實驗流程.........................29 4.2.3靜態應變量測流程.........................30 4.3 材料常數之量測................................31 4.3.1實驗設備.................................31 4.3.2預浸布材料常數之測定.....................32 4.3.3泡棉材料常數之測定.......................34 第五章 實驗結果與討論.............................36 5.1 反算結果......................................36 5.2 誤差討論......................................37 5.2.1反算模型之誤差討論.......................37 5.2.2實驗方法之誤差討論.......................38 第六章 結論與建議.................................41 6.1 結論..........................................41 6.2 未來工作與建議................................41 參考文獻..............................................43 附表..................................................46 附圖..................................................71 自述 著作權聲明

    1.Achenbach, J. D., “Quantitative Nondestructive Evaluation”, Int. J. Solids and Structures, Vol.37, pp.13-27, 2000.

    2.ANSYS 7.0 Documentation:ANSYS Element Reference.

    3.ASTM C273-61, “Shear Test in Flatwise Plane of Flat Sandwich Constructions or Sandwich Cores”, Annual Book of ASTM Standards, Vol.15, pp.6-10, 1983.

    4.ASTM D638-98, “Standard Test Method for Tensile Properties of Plastics”, Annual Book of ASTM Standards, Vol.8, 1999.

    5.Balasubramaniam, K. and Rao, N. S., “Inversion of Composite Material Elastic Constants from Ultrasonic Bulk Wave Phase Velocity Data Using Genetic Algorithm”, Composites Part B, Vol.29, pp.171-180, 1998.

    6.Chen, W. S. and Hwu, C. and Cheng, S. H., “Test and Design of the Neural Network Training Algorithm CGLM”, Proceedings of the 20th National Conference on Mechanical Engineering, Taipei, Taiwan, pp.859-866, 2003.(in Chinese)

    7.Grediac, M. and Paris, P. A., “Direct Identification of Elastic Constants of Anisotropic Plates by Modal Analysis:Theoretical and Numerical Aspects”, J. of Sound and Vibration, Vol.195, pp.401-415,1996.

    8.Hagan, M. T. and Menhaj, M. B., “Training Feedforward Networks with the Marquardt Algorithm”, IEEE Transactions on Neural Networks, Vol.5, No.6, pp.989-993, 1994.

    9.Haykin, S., Neural Networks a Comprehensive Foundation, Prentice Hall, 1999.

    10.Hwang, S. F. and Chang, C. S., “Determination of Elastic Constants of Materials by Vibration Testing”, Composite Structures, Vol.49, pp.183-190, 2000.

    11.Hwu, C. and Gai, H. S., “Vibration Analysis of Composite Wing Structures by a Matrix Form Comprehensive Model”, AIAA Journal, Vol.41, No.11, pp.2261-2273, 2003.

    12.Hwu, C. and Bi, T. Y., Re-Examination of the Buckling and Vibration of the Delaminated Composite Sandwich Beams”, the Chinese Journal of Mechanics, Series B, Vol.17, No.1, pp.27-38, 2001.(in Chinese)

    13.Hwu, C. and Tsai, “Aeroelastic Divergence of Stiffened Composite Multicell Wing Structures”, Journal of Aircraft, Vol.39, No.2, pp.242-251, 2002.

    14.Jones, R. M., Mechanics of Composite Materials, Scripta, Washington DC., 1975.

    15.Liang, Y. C. and Hwu, C., “On-Line Identification of Holes/Cracks in Composite Structures”, Smart Materials and Structures, Vol.10, pp.599-609, 2001.

    16.Rao, S. S., Engineering Optimization Theory and Practice, John Wiley & Sons, Inc., 1996.

    17.Vaddadi, P. and Nakamura, T. and Singh R. P., “Inverse Analysis for Transient Moisture Diffusion through Fiber-Reinforced Composites”, Acta Materialia, Vol.51, pp.177-193, 2003.

    18.Wang, W. and Ishikawa, H. and Yuki, H., “An Inverse Method for Determining Material Properties of a Multi-Layer Medium by Boundary Element Method”, Int. J. Solids and Structures, Vol.38, pp.8907-8920, 2001.

    19.Xu, Y. G. and Liu, G. R., “Determination of the Material Properties of Multilayered Thin Films Using the Elastic Wave Propagation Approach”, J. of Micromechanics and Microengineering, Vol.12, pp.723-729, 2002.

    20.梁燕祝,“二維複材結構之孔洞或裂縫辨識”,博士論文,成功大學航空太空工程研究所,1999。

    21.謝嘉新,“由靜態應變反算彈性係數之研究”,碩士論文,成功大學航空太空工程研究所,1997。

    22.畢天佑,“含脫層夾心樑之挫曲與振動分析” ,碩士論文,成功大學航空太空工程研究所,1999。

    23.蓋欣聖,“複材機翼結構之振動分析及控制”,碩士論文,成功大學航空太空工程研究所,2002。

    24.陳威昇,“類神經網路訓練程序之些許建議”, 碩士論文,成功大學航空太空工程研究所,2003。

    25.羅華強,“類神經網路-MATLAB的應用”,清蔚科技,2001。

    26.杜黎蓉、林博正,“CATIA”,全華科技圖書股份有限公司”,2002。

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE