| 研究生: |
黃嘉諄 Huang, Jia-Zhun |
|---|---|
| 論文名稱: |
室溫下銣85原子之電磁波誘發透明之研究 Experimental study on Electromagnetically Induced Transparency in rubidium 85 at room temperature |
| 指導教授: |
管培辰
Kuan, Pei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 電磁波誘發透明 |
| 外文關鍵詞: | Electromagnetically Induced Transparency, EIT at room temperature |
| 相關次數: | 點閱:101 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究室溫下熱銣原子中電磁波誘發透明(Electromagnetically Induced Transparency)的量子干涉現象,熱原子因為處在相較冷原子高的溫度中,所以環境能影響EIT的因素較多,像是都卜勒效應、原子之間的碰撞等等。
實驗中使用Λ-type EIT,在不外加幫浦光的狀況下,透過調整不同的變因,像是溫度、雷射光大小和外加紫外光來觀察EIT,試著釐清不同的變因對於室溫下熱銣原子的EIT效率以及圖形的影響。
The experiment in this thesis is related to the phenomenon called Electromagnetically Induced Transparency(EIT) in rubidium 85 at room temperature. In thermal atoms, there are many factors from circumstances to influence the EIT system, like Doppler effect, collisions between atoms, etc. We use a Λ-type EIT system in our experiment. Under the condition without optical pumping, we adjust different factors, like temperature, the beam size of lasers and irradiating UV light, to figure out how they affect on the efficiency and the spectrum shapes of EIT.
[1] D. L. Andrews. Introduction to quantum optics: From the semi-classical approach to quantized light, by gilbert grynberg, alain aspect and claude fabre. Contempo-rary Physics, 52(6):627–628, 2011.
[2] K.-J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically
induced transparency. Physical Review Letters, 66(20):2593, 1991.
[3] S. Chakrabarti, A. Pradhan, A. Bandyopadhyay, A. Ray, B. Ray, N. Kar, and P. Ghosh. Velocity-selective resonance dips in the probe absorption spectra of rb d2 transitions induced by a pump laser. Chemical Physics Letters, 399(1):120–124, 2004.
[4] K. Cox, V. I. Yudin, A. V. Taichenachev, I. Novikova, and E. E. Mikhailov. Measurements of the magnetic field vector using multiple electromagnetically induced transparency resonances in rb vapor. Physical Review A, 83(1):015801, 2011.
[5] R. Dicke. The effect of collisions upon the doppler width of spectral lines. Physical Review, 89(2):472, 1953.
[6] W. W. Erickson. Electromagnetically Induced Transparency. PhD thesis, Reed
College, 2012.
[7] R. Finkelstein, S. Bali, O. Firstenberg, and I. Novikova. A practical guide to electromagnetically induced transparency in atomic vapor. arXiv preprint arXiv:2205.10959, 2022.
[8] M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced
transparency: Optics in coherent media. Reviews of modern physics, 77(2):633, 2005.
[9] M. Fox. Quantum optics: an introduction. Oxford master series in atomic, optical, and laser physics. Oxford Univ. Press, Oxford, 2006.36
[10] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler. High efficiency coherent optical memory with warm rubidium vapour. Nature communications, 2(1):1–5, 2011.
[11] T. Karaulanov, M. Graf, D. English, S. Rochester, Y. Rosen, K. Tsigutkin, D. Budker, E. Alexandrov, M. Balabas, D. J. Kimball, et al. Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption. Physical Review A, 79(1):012902, 2009.
[12] O. Katz and O. Firstenberg. Light storage for one second in room-temperature
alkali vapor. Nature communications, 9(1):1–6, 2018.
[13] S. Khan, V. Bharti, and V. Natarajan. Role of dressed-state interference in electro-magnetically induced transparency. Physics Letters A, 380(48):4100–4104, 2016.
[14] M. Klein, M. Hohensee, D. Phillips, and R. Walsworth. Electromagnetically induced transparency in paraffin-coated vapor cells. Physical Review A, 83(1):013826, 2011.
[15] L. Ma and G. Raithel. Doppler narrowing, zeeman and laser beam-shape effects in λ-type electromagnetically induced transparency on the 85rb d2 line in a vapor cell. Journal of Physics Communications, 4(9):095020, 2020.
[16] E. Mariotti, S. Atutov, M. Meucci, P. Bicchi, C. Marinelli, and L. Moi. Dynamics of rubidium light-induced atom desorption (liad). Chemical physics, 187(1-2):111–115, 1994.
[17] R. Mirzoyan. Study of the coherent effects in rubidium atomic vapor under bichromatic laser radiation. Theses, Université de Bourgogne, June 2013.
[18] A. Olson and S. Mayer. Electromagnetically induced transparency in rubidium.
American Journal of Physics, 77:116, 02 2009.
[19] V. Piacente, G. Bardi, and L. Malaspina. Vapor pressure of rubidium and dissociation energy of rb2. The Journal of Chemical Thermodynamics, 5(2):219–226, 1973.
[20] D. A. Steck. Rubidium 87 d line data. 2001.
[21] G. Wang, Y.-S. Wang, E. K. Huang, W. Hung, K.-L. Chao, P.-Y. Wu, Y.-H. Chen, and I. A. Yu. Ultranarrow-bandwidth filter based on a thermal eit medium. Scientific Reports, 8(1):1–7, 2018.