| 研究生: |
姚寶順 Yau, Bao-Shun |
|---|---|
| 論文名稱: |
反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究 Investigation of nanostructured (Ti,Al)xN1-x/SiyN1-y composite films by reactive sputtering |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 氮化鋁鈦 、奈米結構 、反應濺鍍 、氮化矽 |
| 外文關鍵詞: | reactive sputtering, nanostructure, SiyN1-y, (TiAl)xN1-x |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以反應磁控濺鍍零維/二維之奈米結晶氮化鋁鈦/非晶氮化矽複合薄膜和二維/二維之奈米結晶氮化鋁鈦/非晶氮化矽奈米薄層。藉由探討反應氣體之工作分壓、兩相的成份比例、基板偏壓效應、各層間的週期厚度和不同膜厚比等製程參數對鍍層之成分、微結構及與機械性質的影響,以期能獲得兼具高硬度及高韌性之奈米結構鍍層。
實驗結果發現藉由控制輸入於TiAl合金靶(200W)和Si靶之功率(0~200W)可調配兩相之不同成分比。不同成分比之奈米結晶氮化鋁鈦/非晶氮化矽複合薄膜具有不同之從優取向、結晶粒尺寸、橫截面微結構和表面型態等,藉由微結構之改變,可研究其對機械性質之影響。
基板偏壓的施加(0~200V),可有效吸引電漿內惰性氣體離子持續的撞擊鍍層,此效應影響薄膜之成核及成長。由於成核條件改變,薄膜的微觀組織、結晶方向、晶粒尺寸也隨之改變,因此會影響薄膜的機械性質。
實驗中嘗試結合奈米結晶/非晶和奈米薄層結構設計觀念,以期能增加薄膜之韌性,改善薄膜因硬度的提高而造成之脆性破壞。在奈米薄層結構中發現,隨著週期厚度的降低(λ=100~20 nm),可增加層與層間界面之數目和降低結晶粒之尺寸,此結果能有效提高鍍層之硬度。除此之外,藉由層與層間之裂縫轉折,可提升薄膜之韌性,增加薄膜之附著性。
實驗中發現在固定週期厚度(λ=100nm),薄膜之硬度值不隨著膜厚比之變化而改變。雖然在不同膜厚比下,晶粒尺寸會隨著結晶氮化鋁鈦膜厚的降低而線性變小,然而在不同膜厚比下,晶粒尺寸效應並沒有直接影響薄膜硬度值,此時薄層之界面數可能為影響薄膜硬度值之重要參數。
實驗結果中亦發現薄膜之化學成份組成和微結構會與反應氣體分壓有關。在反應濺鍍過程中,必須先瞭解化學吸附過程發生於靶材或基材表面上。隨著氮氣流量的增加,靶材表面容易生成陶瓷化合物,此結果將影響薄膜之濺鍍速率、成分、晶粒尺寸、晶粒型態、表面型態、硬度值及彈性係數。
In the present study, 0D/2D composite and 2D/2D nanolaminate of nc-(Ti,Al)xN1-x/ a-SiyN1-y films were deposited via reactive magnetron sputtering technique. The effects of the nitrogen flow rate, ratio of both phases, thickness of multilayer period and thickness ratio on the composition, microstructure and mechanical properties were primarily investigated.
Results indicated that the composition of nc-(Ti,Al)xN1-x/a-SiyN1-y nanocomposite films could be modulated through the co-deposition process. The content of amorphous SiyN1-y has substantial influence on the preferred orientation, nanocrystallite size, cross-section structure, surface morphology, and hardness.
The films were bombarded by noble-gas ions in a plasma form, and the energy of the arriving ions was influenced by the substrate bias voltage (0~200V). The kinetic energy of bombarding ions had substantial effects on the nucleation and growth of films, crystallographic, physical and mechanical properties.
Microstructural design combined nc/a and nanolaminate structures was used to enhance the toughness of films. For nc-(Ti,Al)xN1-x/a-SiyN1-y nanolaminate films the presence of layers interfere with dislocation motion over a range of λ(20 to 100 nm) and small crystallite size could harden the material. In addition, the introduction of a number of interfaces parallel to the substrate surface can act to deflect cracks and dissipate energy. This led to apparent increase in coating toughness and adhesion.
The effects of thickness ratio of nanolaminate films with λ=100 were also investigated. Results indicated that the crystallite size decreased with decreasing the (Ti,Al)xN1-x thickness. However, the hardness values were fairly constant with different thickness ratio. It could explain that the hardness was independent of crystallite size in nanolaminate films and dominated by the number of interfaces.
The partial pressure of reactive gas was related to composition and microstructure of nanolaminate films. In reactive sputtering process, the chemical adsorption took place on the target or substrate surface should be understood. Results indicated that the formation of compound on target surface with increasing the nitrogen flow had substantially influenced on deposition rate, composition, crystallite size, grain features, surface morphology, hardness and reduced elastic modulus.
1. 張立德、牟季美,“奈米材料和奈米結構”,滄海書局,(2002)。
2. 劉仲明、郭東瀛,“奈米材料”,經濟部工業局,(2002)。
3. 2001材料奈米技術專刊(基礎理論與實務),經濟部技術處,(2001)。
4. W. D. Callister, JR., Materials Science and Engineering: An Introduction, 5th ed., John Wiley & Sons, Inc., New York, (1999).
5. S. Vepřek, S. Reiprich, and Li Shizhi, “Superhard Nanocrystalline Composite Materials: The TiN/Si3N4 System”, Appl. Phys. Lett., 66, 2640-2642 (1995).
6. S. Vepřek, and S. Reiprich, “A Concept for the Design of Novel Superhard Coatings”, Thin Solid Films, 268, 64-71 (1995).
7. S. Vepřek, “Electronic and Mechanical Properties of Nanocrystalline Composites When Approaching Molecular Size”, Thin Solid Films, 297, 145-153 (1997).
8. S. Vepřek, “New Development in Superhard Coatings: The Superhard Nanocrystalline –Amorphous Composites”, Thin Solid Films, 317, 449-454 (1998).
9. F. Vaz, L. Rebouta, S. Ramos, M. F. da Silva, and J. C. Soares, “Physical, Structure and Mechanical Characterization of Ti1-xSixNy Films”, Surf. Coat. Technol. 108-109, 236-240 (1998).
10. F. Vaz, L. Rebouta, R.M.C. da Silva, S. Ramos, M. F. da Silva, and J. C. Soares, “Characterization of Titanium Silicon Nitride Films Deposited by PVD”, Vacuum, 52, 209-214 (1999).
11. F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H.Garem, J. P. Riviere, A. Cavaleiro, and E. Alves, “Characterization of Ti1-xSixNy Composite Films”, Surf. Coat. Technol., 133-134, 307-313 (2000).
12. P. J. Martin and A. Bendavid, “Properties of Ti1-xSixNy Films Deposited by Concurrent Cathodic Arc Evaporation and Magnetron Sputtering”, Surf. Coat. Technol. 163-164, 245-250 (2003).
13. J. Patscheider, “Nanocomposite Hard Coatings for Wear Protection”, MRS Bulletin/March, 180-183 (2003).
14. S. Carvalho, E. Ribeiro, L. Rebouta, J. Pacaud, Ph. Goudeau, P. O. Renault, J. P. Rivière, and C. J. Tavares, “PVD Grown (Ti,Si,Al)N Nanocomposite Coatings and (Ti,Al)N/(Ti,Si)N Multilayers: Structure and Mechanical Properties”, Surf. Coat. Technol. 172, 109-116 (2003).
15. A. Niederhofer, P. Nesládek, H. –D. Männling, K. Moto, S Vepřek, and M. Jílek, “Structural Properties, Internal Stress and Thermal Stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1-yAlySix)N Superhard Nanocomposite Coatings Reaching the Hardness of Diamond”, Surf. Coat. Technol. 120-121, 173-178 (1999).
16. S. J. Bull, and A. M. Jones, “Multilayer Coatings for Improved Performance”, Surf. Coat. Technol., 78, 173-184 (1996).
17. W. –H. Soe, and R. Yamamoto, “Mechanical Properties of Ceramic Multilayers: TiN/CrN, TiN/ZrN, and TiN/TaN”, Materials Chemistry and Physics, 50, 176-181 (1997).
18. H. Holleck and V. Schier, “Muliilayer PVD Coatings for Wear Protection”, Surf. Coat. Technol., 76-77, 328-336 (1995).
19.S. A. Barnett, A. Madan, L. Kim, and K. Martin, “Stability of Nanometer-Thick Layers in Hard Coatings”, MRS Bulletin/March, 169-172 (2003).
20. H. Holleck, M. Lahres, and P. Woll, “Muliilayer Coatings – Influence of Fabrication Parameters on Constitution and Properties”, Surf. Coat. Technol., 41, 179-190 (1990).
21. X. Chu, M. S. Wong, W. D. Sproul, and S. A. Barnett, “Mechanical Properties and Microstructure of Polycrystalline Ceramic/Metal Superlattices: TiN/Ni and TiN/Ni0.9Cr0.1”, Surf. Coat. Technol., 61, 251-256 (1993).
22. H. Holleck, “Material Selection for Hard Coatings”, J. Vac. Sci. Technol., A4, 2661-2669 (1986).
23. 楊玉森,硬質鍍膜技術與工業應用,2002年中華民國鍍膜科技研討會暨國科會計畫研究成果發表會,(2002) 。
24. M. Ohring, The Materials Science of Thin Films, Academic Press, New York, USA, (1992) pp.552.
25. Dennis M. Hausmann, and Roy G. Gordon, “Surface Morphology and Crystallinity Control in the Atomic Layer Deposition (ALD) of Hafniun and Zirconium Oxide Thin Films”, Journal of Crystal Growth, 249, 251-261 (2003).
26. U. Helmersson, S. Todorova, S. A. Barnett, and J. –E. Sundgen, “Growth of Single-Crystal TiN/VN Strained-Layer Superlattices with Extremely High Mechanical Hardness”, J. Appl. Phys., 62, 481-484 (1987).
27. 許俊華,李戈揚,顧明元,“NbN/TaN奈米多層膜的微結構及超高硬度效應”,無機材料學報,15 (3) 561-564 (2000).
28. M. Nordin, and M. Larsson, “Deposition and Characterisation of Multilayered PVD TiN/CrN Coatings on Cemented Carbide”, Surf. Coat. Technol., 116-119, 108-115 (1999).
29. A. Raveh, M. Weiss, M. Pinkas, D. Z. Rosen, and G. Kimmel, “Graded Al-AlN, TiN, and TiAlN Multilayers Deposited by Radio-Frequency Reactive Magnetron Sputtering”, Surf. Coat. Technol., 114, 269-277 (1996).
30. C. J. Tavares, L. Rebouta, E. Alves, A. Cavaleiro, P. Goudeau, J. P. Riviere, and A. Declemy, “A Structure and Mechanical Analysis on PVD-Grown (Ti,Al)N/Mo Multilayers”, Thin Solid Films, 377-378, 425-429 (2000) .
31. J. –E. Sundgren, B. –O. Johansson, and S. –E. Karlsson, “Mechanism of Reactive Sputtering of Titanium Nitride and Titanium Carbide I: Influence of Process Parameters on Film Composition”, Thin Solid Films, 105, 353-384 (1983).
32. S. M. Rossnagel, Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, USA, (1989).
33. T. Leyendecker, O. Lemmer, S. Esser, and J. Edderink, “Industrial application of crystalline diamond-coated tools ”, Surf. Coat. Technol., 48, 175-178 (1991).
34. J. L. Huang, and B. Y. Shew, “Effects of Aluminum Concentration on the Oxidation Behaviors of Reactively Sputtered TiAlN Films”, J. Am. Ceram. Soc., 82, 696-704 (1999).
35. W-. D. Münz, “Titanium Aluminum Nitride Films: A New Alternative to TiN Coatings”, J. Vac. Sci. Technol., A4, 2717-2725 (1986).
36. D. McIntyre, J. E. Greene, G. Håkansson, J. –E. Sundgen and W-. D. Münz, “Oxidation of Metastable Single-Phase Polycrystalline Ti0.5Al0.5N Films: Kinetics and Mechanisms”, J. Appl. Phys. 67, (1990) 1542-1553.
37. O. Knotek, W-. D. Münz, and T. Leyendecker, “Industrial Deposition of Binary, Ternary Nitrides of Titanium, Zirconium, and Aluminum”, J. Vac. Sci. Technol. A5 (4) 2173-2179 (1987).
38. W-. D. Münz, “Large-Scale Manufacturing of Nanoscale Multilayered Hard Coatings Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering”, MRS Bulletin/March 173-179 (2003).
39. B.Y. Shew, and J.L. Huang, and D. F. Lii, “Effects of R.F. Bias and Nitrogen Flow Rates on the Reactive Sputtering of TiAlN Films”, Thin Solid Films, 293, 212-219 (1997).
40. B.Y. Shew, and J.L. Huang, “The Effects of Nitrogen Flow on the Reactively Ti-Al-N Films”, Surf. Coat. Technol.,, 71, 30-36 (1995).
41. F. Qian, G. Temmel, R. Schnupp, and H. Ryssel, “Thin Stoichiometric Silicon Nitride Prepared by R.F. Reactive Sputtering”, Microelectronics Reliability, 39, 317-323 (1999).
42. Y. Hirohata, N. Shimamoto, T. Hino, T. Yamashima, and K. Yabe, “Properties of Silicon Nitride Films Prepared by Magnetron Sputtering”, Thin Solid Films, 253, 425-429 (1994).
43. B. Chapman, “Glow Discharge Processes: Sputtering and Plasma Etching”, John Wiley & Sons, Inc., New York, (1980) pp. 49-176.
44. D. M. Mattox, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982.
45. 莊達人 編著,“VLSI製造技術”, 高立圖書有限公司, (1995) pp.146-158.
46. P. B. Barna, M. Adamik, J. Lábár, L. Kövér, J. Tóth, A. Dévényi, R. Manaila, “Formation of Polycrystalline and Microcrystalline Composite Thin Films by codeposition and Surface Chemical Reaction”, Thin Solid Films, 125, 147-150 (2000).
47. J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci.Technol., 11, 666-670 (1974).
48. H. T. G. Hentzell, C. R. M. Grovenor, and D. A. Smith, “Grain Structure Variation with Temperature for Evaporated Metal Films”, J. Vac. Sci. Technol., A2, 218-219 (1984).
49. P. B. Barna, and M. Adamik, “ Fundamental Structure Forming Phenomena of Polycrystalline Films and the Structure Zone Models”, Thin Solid Films, 317, 27-33 (1998).
50. O. Knotek, T. Leyendecker, “On the Structure of (Ti, Al)N-PVD Coatings”, J. Solid State Chem., 70, 318-322 (1987).
51. H. Holleck , and H. Schulz, “Advanced Layer Material Constitution”, Thin Solid Films, 153, 11-17 (1987).
52. O. Knotek, F. Löffler, and G. Krämer, “Multicomponent and Multilayer Physically Vapour Deposited Coatings for Cutting Tools”, Surf. Coat. Technol., 54-55, 241-248 (1992).
53. J. S. Koehler, “Attempt to Design a Strong Solid”, Phys. Rev., B2, 547-551 (1970).
54. S. L. Lehoczky, “Strength enhancement in thin-layered Al-Cu laminates”, J. Appl. Phys., 49, 5479-5485 (1978).
55. X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, and S. A. Barnett, “Deposition and Properties of Polycrystalline TiN/NBN Superlattice Coatings”, J. of Vac. Sci. Techno., A10, 1604-1609 (1992).
56. K. M. Hubbard, T. R. Jervis, P. B. Mirkarimi and S. A. Barnett, “Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation”, J. Appl. Phys. 72, 4466-4468 (1992)
57. P. B. Mirkarimi, L. Hultman, and S. A. Barnett, “Enhanced Hardness in Lattice-matched Single-Crystal TiN/(V0.6Nb0.4)N superlattices”, Appl. Phys Lett., 57, 2654-2656 (1990).
58. K. K. Shih and D. B. Dove, “Ti/TiN, HfN/Hf-N and W/WNx Multilayer Films with High Mechanical Hardness”, Appl. Phys Lett., 61, 654-656 (1992).
59. J. –H. Xu, G. –Y. Li, and M. –Y. Gu, “The Microstructure and Mechanical Properties of TaN/TiN and TaWN/TiN Superlattice Films”, Thin Solid Films, 370, 45-49 (1998).
60. J. –E. Sundgren, J. Birch, G. Håkansson, L. Hultman, and U. Helmersson, “Growth, Structure Characterization and Properties of Hard and Wear-Protective Layered Materials”, Thin Solid Films, 193-194, 818-831 (1990).
61. T. B. Wu, “Effect of Screening Singularities on the Elastic Constants of Composition-Modulated Alloys”, J. Appl. Phys. 53, 5265-5268 (1982).
62. D. M. Lee, “A Model for Development of Orientation of Vapour Deposits”, J. Mater. Sci., 24, 4375-4378 (1989).
63. H.P. Klug, L. E. Alexander, X-ray Diffraction Procedures, Wiley, New York, (1974).
64. P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, D. C. Dibble, and W. M. Clift, “The Synthesis, Characterization, and Mechanical Properties of Thick, Ultrahard Cubic Boron Nitride Films Deposited by Ion-Assisted Sputtering”, J. Appl. Phys., 82, 1617-1583 (1997).
65. M. Göken and M. Kempf, “Microstructural Properties of Superalloys Investigated by Nanoindentations in an Atomic Force Microscope”, Acta Mater., 47, 1043-1052 (1999).
66. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation”, J. Mater. Res., 47, 1564-1683 (1992).
67. T. F. Page and S. V. Hainsworth, “Using Nanoindentation Techniques for the Characterization of Coated Systems: A Critique”, Surf. Coat. Technol., 61, 201-208 (1993).
68. S. K. Habib, A. Rizk, and I. A. Mousa, “Physical Parameters Affecting Deposition Rates of Binary Alloys in a Magnetron Sputtering System”, Vacuum, 49 153-160 (1998).
69. Kevin. S. Robinson, and Peter M. A. Sherwood, “X-Ray Photoelectron Spectroscopic Studies of the Surface of Sputter Ion Plated Films”, Surface and Interface Analysis, 6, 261-266 (1984).
70. L. Kubler, R. Haug, E. K. Hill, D. Bolmont, and G. Gewinner, “X-Ray Photoelectron Spectroscopy Observations of Argon-Ion Bombardment Effects on Phase Separated Structures such as SiNx Alloys or Si/Si3N4 Interfaces”, J. Vac. Sci. Technol., A.4, 2323-2327 (1986).
71. G. M. Ingo, and N. Zacchetti, “X-Ray Photoelectron Spectroscopy Investigation on the Chemical Structure of Amorphous Silicon Nitride (a-SiNx)”, J. Vac. Sci. Technol. A 7, (1989) 3048-3055.
72. E. Dehan, P. Temple-Boyer, R. Henda, J. J. Pedroviejo, and E. Scheid, “Optical and Structural Properties of SiOx and SiNx Materials”, Thin Solid Films, 266, 14-19 (1995).
73. B. Li, T. Fujimoto, N. Fukumoto, K. Honda, and I. Kojima, “X-Ray Photoelectron Spectroscopy and Grazing Incidence X-Ray Reflectivity Study of Silicon Nitride Thin Films”, Thin Solid Films, 334, 140-144 (1998).
74. E. A. Taft, “Characterization of Silicon Nitride Films”, J. Electrochem. Soc., 118, 1341-1346 (1971)
75. M. Vetter, “Surface Passivation of Silicon by RF Magnetron-Sputtered Silicon Nitride Films”, Thin Solid Films, 337, 118-112 (1999).
76. M. Vetter and M. Rojahn, “Properties of Amorphous Si-Rich Silicon Nitride Prepared by RF-Magnetron Sputtering”, Materials Science and Engineering B71, 321-326 (2000).
77. C. J. Mogab and E.Lugujjo, “Backscattering Analysis of the Composition of Silicon-Nitride Films Deposited by RF Reactive Sputtering”, J. Appl. Phys., 47 (4), 1302-1309 (1976).
78. M. Ruske, G.Bräuer, J. Pistner, J. Szczyrbowski, and M. Weigert, “Properties of SiO2 and Si3N4 Layers Deposited by MF Twin Magnetron Sputtering Using Different Target Materials”, Thin Solid Films, 351, 158-163 (1999).
79. S. J. Bull, T. F. Page, and E. H. Yoffe, “An Explanation of the Indentation Size Effect in Ceramics”, Philosophical Magazine Letters, 59, 281-288 (1989).
80. B. K. Yen, R. L. White, R. J. Waltman, Q. Dai, D. C. Miller, A. J. Kellock, B. Marchon, P. H. Kassai, M. F. Toney, B. Y. York, H. Deng, Q. F. Xiao, and V. Raman, “Microstructure and Properties of Ultrathin Amorphous Silicon Nitride Protective Coating, J. Vac. Sci. Technol. A 21, 1895-1904 (2003).
81. J. E. Sundgren, “Structure and Properties of TiN Coatings”, Thin Solid Films, 128, 21-44 (1985).
82. X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt and W. Gissler, “Elastic Constants and Hardness of Ion-Beam-Sputtered TiNx Films Measured by Brillouin Scattering and Depth-Sensing Indentation”, J. Appl. Phys., 69, 3053-3057 (1991).
83. P. J. Burnett and D.S. Rickerby, “The Relationship between Hardness and Scratch Adhesion”, Thin Solid Films, 154, 403-416 (1987).
84. 黃瑞蓮,陳俊龍,“AES/ESCA表面分析技術於工業材料研究之應用”,材料與社會,第80期57-62 (1993)。
85. G. Hakasson, and J. E. Sundgren, “Microstructure and physical properties of polycrystalline metastable Ti0.5Al0.5N alloys grown by d.c. magnetron sputter deposition”, Thin Solid Films, 153, 55-65 (1987).
86. S. Vepřek, “Plasma-induced and plasma-assisted chemical vapour deposition”, Thin Solid Films, 130, 135-154 (1987)
87. H. Shibata, M. J. Murota, and K. Hashimoto, “Effects of Al (111) Crystal Orientation on Electromigration in Half-Micro Layered Al Interconnects”, Jpn. J. Appl. Phys. Part1, 32, 4479 (1993).
88. H. E. Cheng, M. J. Chiang, and M. H. Hon, “Growth Characteristics and Properties of TiN Coating by Chemical Vapor Deposition”, J. Electrochem. Soc., 142, 1573 (1995)
89. L. Hultman, J.-E. Sundgren, J. E. Greene, D. B. Bergstrom, and I. Petrov, “High-Flux Low-Energy (~20 eV) N2+ Ion Irradiation during TiN Deposition by Reactive Magnetron Sputtering: Effects on Microstructure and Preferred Orientation”, J. Appl. Phys., 78, 5395-5403 (1995).
90. U. C. Oh, and J. H. Je, “Effects of Strain Energy on the Preferred Orientation of TiN Thin Films”, J. Appl. Phys., 74, 16921696 (1976).
91. J. Pelleg, L. Z. Zevin, and S. Lungo, “Reactive-Sputter-Deposited TiN Films on Glass Substrates”, Thin Solid Films, 197, 117-128 (1991).
92. P. B. Barna, M. Adamik, U. Kaiser, and H. Hobert, “Preparation of Polycrystalline and Microcrystalline Germanium Composite Films by codeposition of Active Additives”, J. Non-Cryst. Solids, 227-230, 1063-1068 (1998).
93. J. Shieh, and M. H. Hon, “Plasma-Enhanced Chemical-Vapor Deposition of Titanium Aluminum Carbonitride/Amorphous-Carbon Nanocomposite Thin Films”, J. Vac. Sci. Technol. A 20, 87-92 (2002).
94. M. Diserens, J. Patscheider, and F. Lévy, “Improving the Properties of Titanium Nitride by Incorporation of Silicon”, Surf. Coat. Technol., 108-109, 241-246 (1998).
95. B. K. Tay, X. Shi, H. S. Yang, H. S. Tan, D. Chua, and S. Y. Teo, “The Effect of Deposition Conditions on the Properties of TiN Thin Films Prepared by Filtered Cathodic Vacuum-Arc Technique”, Surf. Coat. Technol., 111, 229-233 (1999).
96. J. J. Kim, D. H. Jung, M. S. Kim, S. H. Kim, and D. Y. Yoon, “Surface Roughness Reducing Effect of Iodine Sources (CH3I, C2H5I) on Ru and RuO2 Composite Films Grown by MOCVD”, Thin Solid Films 409, 28-32 (2002).
97. E. O. Hall, Proc. Phys. Soc., Ser. B 64, 747 (1951).
98. N. J. Petch, J. Iron Steel Inst. 174, 25 (1953).
99. D.F. Lii , J.L. Huang, and M.H. Lin , “The Effects of TiAl Interlayer On PVD TiAlN Films”, Surf. Coat. Technol., 99, 197-202 (1998).
100. M. K. Lee and H. S. Kang, “Characteristics of TiN Film Deposited on Stellite Using Reactive Magnetron Sputter Ion Plating”, J. Mater. Res., 12, 2393-2400 (1997).
101. J. –E. Sundgren, B. –O. Johansson, H. T. G. Hentzell, and S. -E. Karlsson, “Mechanism of Reactive Sputtering of Titanium Nitride and Titanium Carbide III: Influence of Substrate Bias on Composition and Structure”, Thin Solid Films, 105, 385-393 (1983).
102. B. F. Coll, R. Fontana, A. Gates, and P. Sathrum, “(Ti-Al)N Advanced Films Prepared by Arc Process”, Materials Science and Engineering A140, 816-824 (1991)
103. S. Berg, and I. V. Katardjiev, “Modelling of Bias Sputter Deposition Processes”, Surf. Coating Technol. 68-69, 325-331 (1994).
104. W. Ensinger, “Growth of Thin Films with Preferential Crystallographic Orientation by Ion Bombardment during Deposition”, Surf. Coat. Technol. 65, 90-105 (1994).
105. L. Dong, and D. J. Srolovitz, “Texture Development Mechanisms in Ion Beam Asisted Deposition”, J. Appl. Phys. 84, 5261-5269 (1998).
106. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Nelson Thornes Ltd, Uk, (2001) pp. 112.
107. W. J. Chou, G. P. Yu, and J. H. Huang, “Bias Effect of Ion-Plated Zirconium Nitride Film on Si (100)”, Thin Solid Films 405, 162-169 (2002).
108. M. Sano, K. Yukimura, T. Maruyama, S. Kurooka, Y. Suzuki, A. Chayahara, A. Kinomura, and Y. Horino, “Titanium Nitride Coating on Implanted Layer using Titanium Plasma Based Ion Implantation”, Nuclear Instruments and Methods in Physics Research B, 148, 37-41 (1999).
109. Y. M. Chen, G. P. Yu, and J. H. Huang, “Characterizing the Effects of Multiprocess Parameters on the Preferred Orientation of TiN Coating Using a Combined Index”, Vacuum, 66, 19-25 (2002).
110. M. Marinov, “Effect of Ion Bombardment on the Initial Stages of Thin Film Growth”, Thin Solid Films 46, 267-274 (1977).
111. H. L. Ma, X.T. Hao, J. Ma, Y. G. Yang, S. L. Huang, F. Chen, Q. P. Wang, and D. H. Zhang, “Bias Voltage Dependence of Properties for ZnO:Al Films Deposited on Flexible Substrate”, Surf. Coat. Technol., 161, 58-61 (2002).
112. R. D. Bland, G. J. Kominiak, and D.M. Mattox, “Effect of Ion Bombardment on Thick Metal and Ceramic Deposits”, J. Vac. Sci.Technol., 11 (4) 671-674 (1974).
113. J. I. Goldstein, H. Yakowitz, Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis, Plenum Press, New York, 1975.
114. X. Chu, S. A. Barnett, M. S. Wong, and W. D. Sproul, “Reactive unbalanced Magnetron Sputter Deposition of Polycrystalline TiN/NbN Superlarrice Coatings”, Surf. Coat. Technol. 57, 13-18 (1993).
115. R. Kayushina, Yu. Lvov, N. Stepina, V. Belyaev, and Yu. Khurgin, “Construction and X-ray reflectivity study of self-assembled Lysozyme/Polyion Multilayers”, Thin Solid Films 284-285, 246-248 (1996).
116.汪建民 主編,材料分析,民全書局,(1998) pp.83-90。
117. J. W. Elam, Z. A. Sechrist, and S. M. George, “ZnO/Al2O3 Nanolaminates Fabricated by Atomic Layer Deposition: Growth and Surface Roughness Measurements”, Thin Solid Films 414, 43-55 (2002).
118. A. Madan, Y. Y. Wang, S. A. Barnett, C. Engstrom, H. Ljungcrantz, L. Hultman, and M. Grimsditch, “Enhanced Mechanical Hardness in Epitaxial Nonisostructural Mo/NbN and W/NbN Superlattices”, J. Appl. Phys. 84, 776-785 (1998).
119. J. H. Xu, M. Y. Gu,, G. Y. Li, and Y. P. Jin, “Microstructures and Properties of Si3N4/TiN Ceramic Nano-Multilayer Films”, Trans. Nonferrous Met. Soc. China 9, 764-767 (1999).
120. M. -S. Wong, G. -Y. Hsiao, and S –Y Yang, “Preparation and Characterization of AlN/ZrN and AlN/TiN Nanolaminate Coatings”, Surf. Coat. Technol., 113-114, 160-165 (2000).
121. S. J. Bull, “Failure Models in Scratch Adhesion Testing”, Surf. Coat. Technol., 50, 25-32 (1991).
122. S. J. Bull, “Failure Models Maps in the Thin Film Scratch Adhesion Test”, Tribology International, 30, 491-498 (1997).
123. A. Karimi, Y. Wang, T. Cselle, and M. Morstein, “Fracture Mechanisms in nanoscale Layered Hard Thin Films”, Thin Solid Films, 420-421, 275-280 (2002).
124. J. Lausmaa, “Surface spectroscopic characterization of titanium implant materials”, Elecon. Spectrosc. Relat. Phenom 81, 343-361 (1996).
125. M. A. Baker, S. J. Greaves, E. Wendler, and V. Fox, “A Comparsion of in Situ Polishing and Ion Beam Sputtering as Surface Preparation Methods for XPS Analysis of PVD Coatings”, Thin Solid Films 377-378, 473-477 (2000).
126. F. –H. Lu, and H. –Y. Chen, “XPS Analysis of TiN Films on Cu Substrate after Annealing in the Controlled Atomosphere”, Thin Solid Films 355-356, 374-379 (1999).
127. R. J. Rodríguez, J. A. García, A. Medrano, M. Rico, R. Sánchez, R. Martínez, C. Labrugère, M. Lahaye, and A. Guette, “Tribological Behaviour of Hard Coatings Deposited by Arc-Evaporation PVD”, Vacuum 67, 559-566 (2002).
128. J. –E. Sundgren, B. –O. Johansson, S. –E. Karlsson, and H. T. G. Hentzell, “Mechanisms of Reactive Sputtering of Titanium Nitride and Titanium Carbide II: Morphology and Structure”, Thin Solid Films, 105, 367-384 (1983).
129. Z. –J. Liu and Y. G. Shen, “Effects of Amorphous Matrix on the Grain Growth Kinetics in Two-Phase Nanostructured Films: a Monte Carlo Study”, Acta Materialia, 52, 729-736 (2004).
130. J. W. Coburn, E. Taglauer, and E. Kay, “Study of the Neutral Species RF Sputtered from Oxide Targets”, Jpn. J. Appl. Phys. Suppl. 2, 501-504 (1974).
131. K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, and C. M. Lee, “Effects of Nitrogen Flow Rates on the Growth Morphology of TiAlN Films Prepared by an RF-Reactive Sputtering Technique”, Thin Solid Films, 406, 159-163 (2002).
132. V. Valvoda, R. Kuzel, JR., R. Cerny, and J. Musil, “Structure of TiN Coatings Deposited at Relatively High Rates and Low Temperatures by Magnetron Sputtering”, Thin Solid Films, 156, 53-63 (1988).
133. J. Musil, S. Kadlec, J. Vyskocil, and V. Valvoda, “New Results in D.C. Reactive Magnetron Deposition of TiNx Films”, Thin Solid Films, 167, 107-119 (1988).