| 研究生: |
邵愛寧 Shao, Ai-Ning |
|---|---|
| 論文名稱: |
代謝重整於腎臟上皮以及轉化生長因子β刺激間質性細胞的特性 Metabolic Reprogramming in Renal Epithelial and TGFβ-induced Mesenchymal Signatures |
| 指導教授: |
蔡曜聲
Tsai, Yau-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 腎臟纖維化 、上皮間質轉化 、轉化生長因子-β 、代謝重整 |
| 外文關鍵詞: | Kidney fibrosis, epithelial to mesenchymal transition (EMT), TGFβ, metabolic reprogramming |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全世界大約有10%人口受慢性腎臟病影響,對於其治療以及改善為當前重要的議題。慢性腎臟病會造成腎臟纖維化,其過程會失去腎臟細胞並且產生過量的細胞外基質(ECM)填補。已知腎臟上皮細胞經轉化生長因子-β刺激後,可以透過上皮間質轉化(EMT)作為腎臟纖維化的模型。 然而,代謝重整對於腎臟功能缺失是否影響仍是未知的。因此,我們嘗試探討腎臟上皮間質轉化以及代謝重整間的關係。在我們實驗室先前研究顯示,腎臟上皮細胞經轉化生長因子-β刺激,經上皮間質轉化後會有梭狀細胞型態、培養液酸化並且增加間質性細胞標記以及轉錄因子表現。接著我們利用液相層析儀/質譜儀分析代謝產物,結果顯示,腎臟上皮細胞經刺激形成間質特性細胞後改變代謝表現,其過程增加糖解作用、減少檸檬酸循環以及五碳糖磷酸途徑代謝產物。經海馬生物能量測定儀檢測,腎臟上皮細胞經刺激形成間質特性細胞增加糖解通量以及粒線體呼吸。此外,我們發現腎臟上皮經刺激形成間質特性細胞有特別的粒線體異常情況,粒線體膜間氫離子過極化、過氧化物堆積以及三磷酸腺苷(ATP)的減少。進一步,結果顯示腎臟上皮經刺激形成間質特性細胞會減少氧化還原能力以及增加氧化壓力。我們接著同時使用乳酸抑制劑草酸鈉以減少乳酸產生。結果顯示乳酸抑制劑草酸鈉減少轉化生長因子-β刺激造成的梭狀細胞型態、培養液酸化、間質性細胞標記於蛋白的表現,卻無法改變間質性細胞標記於信使核糖核酸(mRNA)的表現。草酸鈉減少轉化生長因子-β刺激造成的糖解通量。乳酸抑制劑草酸鈉減緩轉化生長因子-β刺激造成粒線體呼吸,但卻沒有減緩其他粒腺體異常的功能。乳酸抑制劑草酸鈉增加五碳糖磷酸途徑以及核酸合成代謝產物,但卻無法減緩轉化生長因子-β刺激造成減少氧化還原能力以及增加氧化壓力。我們的研究表示,腎臟經纖維化刺激後顯示有特別的代謝方式,並且調控代謝重整可以影響腎臟纖維化程度。
Around 10% of the population worldwide is affected by chronic kidney disease (CKD), the need for treatment and improvement becomes an important issue. CKD often results in kidney fibrosis, which is characterized by loss of renal cells and their replacement by extracellular matrix (ECM). Epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor beta (TGFβ) family in renal tubular cells has been proposed as one of the models for kidney fibrosis. Recent studies show that kidney fibrosis is accompanied by metabolic reprogramming, altering the energy source from oxidative phosphorylation to glycolysis. However, whether metabolic reprogramming is causative for kidney functional loss remains unknown. Therefore, we attempted to study the interaction between metabolic reprogramming and renal EMT. Our results showed that TGFβ-induced mesenchymal signature exhibited a spindle-like morphology, media acidification, and upregulation of mesenchymal markers and transcription factors. By using LC/MS to determine the signal count of metabolites, we found that TGFβ-induced mesenchymal signature showed upregulation of glycolysis metabolites, downregulation of TCA cycle metabolites and associated amino acids, and decreased PPP metabolites and nucleotide synthesis. Seahorse analyzer confirmed increased glycolytic flux, but showed increased mitochondrial respiration as TGFβ-induced mesenchymal signatures. Surprisingly, we found that TGFβ-induced mesenchymal signature exhibited a special spectrum of mitochondrial dysfunction with hyperpolarization, increased mitochondrial ROS, but decreased ATP content. Moreover, TGFβ-induced mesenchymal signature exhibited decreased reducing power and increased oxidative stress. We next used lactate dehydrogenase A (LDHA) inhibitor sodium oxamate to inhibit lactate production. Although LDHA inhibition attenuated mesenchymal signature with decreased spindle-like morphology, media acidification, and downregulation of mesenchymal markers in protein levels, it did not reverse mesenchymal markers in mRNA levels. LDHA inhibition attenuated TGFβ-induced glycolytic flux in spite of upregulation of most glycolysis metabolites. LDHA inhibition reversed mitochondrial respiration, but did not rescue mitochondrial dysfunction induced by TGFβ. LDHA inhibition exhibited upregulated PPP metabolites and nucleotide synthesis, but did not reversed TGFβ-induced decreased reducing power and increased oxidative stress. Our study indicates that renal epithelial and TGFβ-induced mesenchymal signature exhibit a quite distinct metabolic program, and modulation of metabolism regulates the transition between them.
References
1. Kikuchi, H., et al., Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease. Kidney Int, 2019. 95(1): p. 123-137.
2. Simon, E.E. and L.L. Hamm, A basic approach to CKD. Kidney Int, 2010. 77(7): p. 567-9.
3. Tsai, M.H., et al., Incidence, Prevalence, and Duration of Chronic Kidney Disease in Taiwan: Results from a Community-Based Screening Program of 106,094 Individuals. Nephron, 2018. 140(3): p. 175-184.
4. Mullins, L.J., et al., Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech, 2016. 9(12): p. 1419-1433.
5. Saran, R., et al., US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2017. 69(3 Suppl 1): p. A7-A8.
6. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol, 2019. 20(2): p. 69-84.
7. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
8. Liu, C.Y., et al., Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget, 2015. 6(18): p. 15966-83.
9. Nieto, M.A., et al., Emt: 2016. Cell, 2016. 166(1): p. 21-45.
10. Voon, D.C., et al., The EMT spectrum and therapeutic opportunities. Mol Oncol, 2017. 11(7): p. 878-891.
11. Duffield, J.S., Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest, 2014. 124(6): p. 2299-306.
12. Zhou, D. and Y. Liu, Renal fibrosis in 2015: Understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol, 2016. 12(2): p. 68-70.
13. Strutz, F., et al., Identification and characterization of a fibroblast marker: FSP1. J Cell Biol, 1995. 130(2): p. 393-405.
14. Liu, B.C., et al., Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int, 2018. 93(3): p. 568-579.
15. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
16. Lovisa, S., et al., Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med, 2015. 21(9): p. 998-1009.
32
17. Yeh, Y.C., et al., Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol, 2010. 177(4): p. 1743-54.
18. Morandi, A., et al., Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors. Front Oncol, 2017. 7: p. 40.
19. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33.
20. Martinez-Outschoorn, U.E., et al., Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol, 2017. 14(2): p. 113.
21. Sciacovelli, M. and C. Frezza, Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J, 2017. 284(19): p. 3132-3144.
22. Xing, Y., et al., Metabolic reprogramming of the tumour microenvironment. FEBS J, 2015. 282(20): p. 3892-8.
23. Jiang, L., et al., Metabolic reprogramming during TGFbeta1-induced epithelial-to-mesenchymal transition. Oncogene, 2015. 34(30): p. 3908-16.
24. Liu, M., et al., Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer Metab, 2016. 4: p. 19.
25. Simon, N. and A. Hertig, Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis. Front Med (Lausanne), 2015. 2: p. 52.
26. Tanaka, M., et al., Reduction of fatty acid oxidation and responses to hypoxia correlate with the progression of de-differentiation in HCC. Mol Med Rep, 2013. 7(2): p. 365-70.
27. Wettersten, H.I., et al., Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol, 2017. 13(7): p. 410-419.
28. Ding, H., et al., Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Renal Physiol, 2017. 313(3): p. F561-F575.
29. Tang, M.J. and R.L. Tannen, Relationship between proliferation and glucose metabolism in primary cultures of rabbit proximal tubules. Am J Physiol, 1990. 259(3 Pt 1): p. C455-61.
30. Goraya, N. and D.E. Wesson, Clinical evidence that treatment of metabolic acidosis slows the progression of chronic kidney disease. Curr Opin Nephrol Hypertens, 2019. 28(3): p. 267-277.
33
31. Le, A., et al., Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A, 2010. 107(5): p. 2037-42.
32. Xie, H., et al., Targeting lactate dehydrogenase--a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab, 2014. 19(5): p. 795-809.
33. Cassim, S., et al., Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment. Cell Cycle, 2018. 17(7): p. 903-916.
34. Yang, Y., et al., Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget, 2014. 5(23): p. 11886-96.
35. Han, X., et al., Evaluation of the anti-tumor effects of lactate dehydrogenase inhibitor galloflavin in endometrial cancer cells. J Hematol Oncol, 2015. 8: p. 2.
36. Shi, Y. and B.M. Pinto, Human lactate dehydrogenase a inhibitors: a molecular dynamics investigation. PLoS One, 2014. 9(1): p. e86365.
37. Zhou, M., et al., Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer, 2010. 9: p. 33.
38. Thornburg, J.M., et al., Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res, 2008. 10(5): p. R84.
39. Wu, M.C., et al., Oxamate Enhances the Anti-Inflammatory and Insulin-Sensitizing Effects of Metformin in Diabetic Mice. Pharmacology, 2017. 100(5-6): p. 218-228.
40. Farabegoli, F., et al., Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur J Pharm Sci, 2012. 47(4): p. 729-38.
41. Chen, W. and M.K. Abramowitz, Metabolic acidosis and the progression of chronic kidney disease. BMC Nephrol, 2014. 15: p. 55.
42. Yang, M. and K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat Rev Cancer, 2016. 16(10): p. 650-62.
43. Ducker, G.S. and J.D. Rabinowitz, One-Carbon Metabolism in Health and Disease. Cell Metab, 2017. 25(1): p. 27-42.
44. Guerra, F., et al., Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front Oncol, 2017. 7: p. 295.
45. Brand, M.D. and D.G. Nicholls, Assessing mitochondrial dysfunction in cells. Biochem J, 2011. 435(2): p. 297-312.
46. Aoyama, K. and T. Nakaki, Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules, 2015. 20(5): p. 8742-58.
34
47. Zitka, O., et al., Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett, 2012. 4(6): p. 1247-1253.
48. Cho, E.S., et al., The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy. Biomol Ther (Seoul), 2018. 26(1): p. 29-38.
49. Patra, K.C. and N. Hay, The pentose phosphate pathway and cancer. Trends Biochem Sci, 2014. 39(8): p. 347-54.
50. Rellinger, E.J., et al., FX11 inhibits aerobic glycolysis and growth of neuroblastoma cells. Surgery, 2017. 161(3): p. 747-752.
51. Nayak, M.K., et al., Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Adv, 2018. 2(15): p. 2029-2038.
52. Eto, K., et al., Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science, 1999. 283(5404): p. 981-5.
53. Gaude, E., et al., NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Mol Cell, 2018. 69(4): p. 581-593 e7.
54. Wang, C., et al., Distinct metabolic programs induced by TGF-beta1 and BMP2 in human articular chondrocytes with osteoarthritis. J Orthop Translat, 2018. 12: p. 66-73.
55. Abe, Y., et al., TGF-beta1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway. Am J Physiol Renal Physiol, 2013. 305(10): p. F1477-90.
56. Negmadjanov, U., et al., TGF-beta1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PLoS One, 2015. 10(4): p. e0123046.
57. Knott, S.R.V., et al., Asparagine bioavailability governs metastasis in a model of breast cancer. Nature, 2018. 554(7692): p. 378-381.
58. Lee, S.Y., et al., Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget, 2016. 7(7): p. 7925-39.
59. Locasale, J.W., Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer, 2013. 13(8): p. 572-83.
60. Selhub, J. and J.W. Miller, The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr, 1992. 55(1): p. 131-8.
61. Jin, L. and Y. Zhou, Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett, 2019. 17(5): p. 4213-4221.
35
62. Moreno-Sanchez, R., et al., Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochim Biophys Acta Gen Subj, 2017. 1861(1 Pt A): p. 3221-3236.
63. Kang, H.M., et al., Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med, 2015. 21(1): p. 37-46.
64. Rowe, I., et al., Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med, 2013. 19(4): p. 488-93.
65. Li, B., et al., Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature, 2014. 513(7517): p. 251-5.
校內:不公開