簡易檢索 / 詳目顯示

研究生: 陳俊宇
Chen, Jiun-Yu
論文名稱: 含碳介層之鍺/矽(100)量子點之應變分析
Strain Analyses of C-induced Ge/Si(100) Quantum Dots
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 69
中文關鍵詞: 應變場有限元素法鍺/矽量子點
外文關鍵詞: Strain field, FEM, Ge/Si quantum dots
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用有限元素理論,分析埋入式圓頂型Ge/Si0.69Ge0.3C0.01/Si量子點異質結構之應變分佈行為。首先測試相異形狀與表面量子點的情況,以評估建立模型的實用性。若探討不同截面比值的量子點分析模型,則可發現液靜壓應變(hydrostatic strain)於不同截面幾何之量子點內部保持定值,而雙軸性應變(biaxial strain)則與量子點的截面比具有高度相關性。

    覆蓋層的厚度以及量子點的截面幾何對垂直關聯現象扮演重要的因素。量子點垂直關聯性的程度會隨著間隔層厚度的增加而減弱,且關聯位置將隨截面比值增大而逐漸偏離量子點中心。除此之外,若考慮雙量子點系統,則次層量子點原子亦有擴散至兩量子點中央間隔區域的傾向。針對相關參數對應變分佈的影響,可藉本文的分析結論,解釋量子點異質結構的物理特性。

    We calculated the strain distributions in capped domed Ge/Si0.69Ge0.3C0.01/Si quantum dots heterosystem using finite-element method. For practicability we examined the cases of different island shape, with and without covered models. After that we compared with the models having variant truncation factors. Results show that the hydrostatic component of the strain is almost remains unchanged within the dots, while the biaxial strain is very sensitive to the truncation factor. One can therefore use strain to tailor the band structure according to the needs for a particular application.

    Factors such as the thickness of the spacer layer and the truncation factor of the island are found to play an important role in the vertical self-organized growth. The vertical correlation decreases with the increase in cap layer thickness, and deviates from the center of cap layer surface with the island having larger truncation factor. Besides, the effects of two dots are also discussed. All results within the study could provide useful suggestions.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 符號說明 XI 第一章 緒論 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 7 1.4 章節瀏覽 8 第二章 相關科技與發展 2.1 奈米科技 9 2.1.1 奈米材料基礎特徵 9 2.1.1.1 表面效應 9 2.1.1.2 量子效應 10 2.1.2 奈米技術 10 2.1.2.1 掃描穿隧式顯微術 11 2.1.2.2 原子力顯微術 12 2.1.3 我國奈米科技研究之規劃與推動概況 13 2.2 量子點系統 17 2.2.1 量子點結構與特性 17 2.2.2 量子點製備技術 17 2.2.2.1 分子束磊晶技術 18 2.2.2.2 磊晶模式 19 2.2.3 應變效應與電子行為 20 2.2.4 垂直耦合現象 22 第三章 有限元素模型之建立 3.1 有限元素理論 26 3.2 三維有限元素模型 30 3.2.1 數值模型說明 30 3.2.2 模擬參數 31 3.2.2.1 元素型態 31 3.2.2.2 材料性質 31 3.2.3 晶格失配應變 33 3.2.4 邊界條件 34 第四章 結果與討論 4.1 量子點內質應變場 38 4.1.1 相異量子點形狀 39 4.1.2 覆蓋層作用 39 4.1.3 相異截面比值 39 4.2 垂直關聯效應 47 4.2.1 相異間隔層厚度 47 4.2.2 相異截面比值 47 4.2.3 雙量子點系統 48 第五章 結論與建議 5.1 總結 57 5.2 建議 58 參考文獻 59 附錄A-網格測試 63 附錄B-案例比較 67 自述 69

    [1] Abstreiter G, Schittenhelm P, Engel C, Silveira E, Zrenner A, Meertens D and Jäger W, Growth and characterization of self-assembled Ge-rich islands on Si, Semicond. Sci. Technol. 11, 1521(1996).
    [2] Andreev A D, Downes J R, Faux D A, and O'Reilly E P, Strain distributions in quantum dots of arbitrary shape, J. Appl. Phys. 86, 297(1999).
    [3] Benabbas T, François P, Androussi Y and Lefebvre A, Stress relaxation in highly strained InAs/GaAs structures as studied by finite element analysis and transmission electron microscopy, J. Appl. Phys. 80, 2763(1996).
    [4] Benabbas T, Androussi Y and Lefebvre A, A finite element study of strain fields in vertically aligned InAs islands in GaAs, J. Appl. Phys. 86, 1945(1999).
    [5] Bimberg D, Grundmann M and Ledentsov N N, Quantum Dot Heterostructures, Wiley, UK, 1998.
    [6] Bimberg D, Heinrichsdorff F, Ledentsov N N and Shchukin V A, Self-organized growth of semiconductor nanostructures for novel light emitters, Appl. Surf. Sci. 159-160, 1(2000).
    [7] Chien F S -S, Wu C -L, Chou Y -C, Chen T T, Gwo S , and Hsien W -F, Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching, Appl. Phys. Lett. 75, 2429(1999).
    [8] Christiansen S, Albrecht M, Strunk H P and Maier H J, Strained state of Ge(Si) islands on Si: finite element calculations and comparison to convergent beam electron-diffraction measurements, Appl. Phys. Lett. 64, 3617(1994).
    [9] Christiansen S, Albrecht M, Strunk H P, Hansson P O and Bauser E, Reduced effective misfit in laterally limited structures such as epitaxial islands, Appl. Phys. Lett. 66, 574(1995).
    [10] Crommie M F, Lutz C P, Confinement of electrons to quantum corrals on a metal surface, Science 262, 218(1993).
    [11] Downes J R, Faux D A, and O'Reilly E P, A simple method for calculating strain distribution in quantum dot structures, J. Appl. Phys. 82, 3754(1997).
    [12] Eaglesham D J and Cerullo M, Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100), Phys. Rev. Lett. 64, 1943(1990).
    [13] Eberl K, Schmidt O G, Schieker S, Jin-Phillipp N Y and Phillipp F, Formation and optical properties of carbon-induced Ge dots, Solid-State Electron. 42, 1593(1998).
    [14] Eberl K, Lipinski M O, Manz Y M, Winter W, Jin-Phillipp N Y and Schmidt O G, Self-assembling quantum dots for optoelectronic devices on Si and GaAs, Physica E 9, 164(2001).
    [15] Eigler D M and Schweizer E K, Positioning single atoms with a scanning tunnelling microscope, Nature, 344, 524(1990).
    [16] Grundmann M, Christen J, Ledentsov N N, Böhrer J and Bimberg D, Ultranarrow Luminescence Lines from Single Quantum Dots, Phys. Rev. Lett. 74(20), 4043(1995).
    [17] Grundmann M, Stier O, and Bimberg D, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons and electronic structure, Physical Review B 52, 11969(1995).
    [18] Hirth J P and Lothe J, Theory of Dislocations, Wiley, New York, 1982.
    [19] Jandt K D, Atomic force microscopy of biomaterials surfaces and interfaces, Surface Science 491, 303(2001).
    [20] Kasper E and Lyutovich K, Properties of Silicon Germanium and SiGe:Carbon, INSPEC, London, 2000.
    [21] Kim J Y, Ihm S H, Seok J H, Lee C H, Lee Y H, Suh E K and Lee H J, Growth temperature dependence on the formation of carbon-induced Ge quantum dots, Thin Solid Films 369, 96(2000).
    [22] Leifeld O, Müller E, Grützmacher D, Müller B and Kern K, In situ scanning tunneling microscopy study of C-induced Ge quantum dot formation on Si(100), Appl. Phys. Lett. 74, 994(1999).
    [23] Mamin H J, Guethner P H, and Rugar D, Atomic Emission from a Gold Scanning-Tunneling-Microscope Tip, Phys. Rev. Lett. 65(19), 2418(1990).
    [24] Mateeva E, Sutter P, Bean J C and Lagally M G, Mechanism of organization of three-dimensional islands in SiGe/Si multilayers, Appl. Phys. Lett. 71(22), 3233(1997).
    [25] Pearson G S and Faux D A, Analytical solutions for strain in pyramidal quantum dots, J. Appl. Phys. 88, 730(2000).
    [26] Pryor C, Kim J, Wang L W, Williamson A J, and Zunger A, Comparison of two methods for describing the strain profiles in quantum dots, J. Appl. Phys. 83, 2548(1998).
    [27] Raiteri P, Valentinotti F and Miglio L, Stress, strain and elastic energy at nanometric Ge dots on Si(001), Appl. Surf. Sci. 188, 4(2002).
    [28] Ross F M, Tromp R M and Reuter M C, Transition states between pyramids and domes during Ge/Si island growth, Science 286, 1931(1999).
    [29] Sakai A and Tatsumi T, Ge growth on Si using atomic hydrogen as a surfactant, Appl. Phys. Lett. 64, 52(1994).
    [30] Schmidt O G, Lange C, Eberl K, Kienzle O and Ernst F, Formation of carbon-induced germanium dots, Appl. Phys. Lett. 71, 2340(1997).
    [31] Shin H, Lee W and Yoo Y H, Effect of the stacking period on the strain field in InAs/GaAs quantum dots, Nanotechnology 14, 742(2003).
    [32] Voigtländer B and Zinner A, Simultaneous molecular beam epitaxy growth and scanning tunneling microscopy imaging during Ge/Si epitaxy, Appl. Phys. Lett. 63(22), 3055(1993).
    [33] Wakayama Y, Gerth G, Werner P, Gösele U and Sokolov L V, Structure transition of Ge dots induced by submonolayer carbon on Ge wetting layer, Appl. Phys. Lett. 77, 2328(2000).
    [34] Wan J, Luo Y H, Jiang Z M, Jin G, Liu J L, Wang Kang L, Liao X Z and Zou J, Ge/Si interdiffusion in the GeSi dots and wetting layers, J. Appl. Phys. 90(8), 4290(2001).
    [35] Xie Q, Madhukar A, Chen P and Kobayashi N P, Vertically Self-Organized InAs Quantum Box Island on GaAs(100), Phys. Rev. Lett. 75, 2542(1995).
    [36] http://staff.aist.go.jp/s-kazaoui/
    [37] http://www.aist.go.jp/aist_j/organization/research_lab/mischel/mischel_main.html
    [38] http://www.fzu.cz/oddeleni/povrchy/mbe/mbe.php3
    [39] 王崇人, 神奇的奈米科學, 科學發展第354期48頁, 2002年6月。

    下載圖示 校內:立即公開
    校外:2003-07-25公開
    QR CODE