| 研究生: |
鐘于婷 Chung, Yu-Ting |
|---|---|
| 論文名稱: |
中國人MBL基因型與體外白色念珠菌及結核桿菌感染之相關性 Analysis of mannose-binding lectin genotypes and the association with Candida albicans and Mycobacterium tuberculosis infection ex vivo |
| 指導教授: |
林尊湄
Lin, Tsun-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 結核桿菌 、白色念珠菌 、MBL基因型 |
| 外文關鍵詞: | MBL, C. albicans, M. tuberculosis |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Mannose binding lectin (MBL) 是一種由肝臟製造的血清蛋白,它具有調理素的功能,並能夠幫助細胞進行吞噬作用,進而刺激補體系統的活化,因此MBL在先天免疫系統中扮演重要角色。過去研究發現,血清中MBL的缺乏與多種疾病的感染風險有關。而MBL缺乏的原因主要來自於MBL-2基因於promoter及 exon 1有基因多型性的發生。這份研究中,我們進行588個台灣地區的中國人及170個結核病病人,分析其MBL-2基因多型性發生的頻率。結果發現一般健康者MBL-2 gene在exon 1,只發生codon 54的變異(A→B),其頻率為17.9 % (210/1176)。在MBL-2基因promoter -550及 -221 的位置,基因型分佈頻率分別是: HY/HY, 19.2 %; HY/LY, 28.9 %; LY/LY, 16.0 %; HY/LX, 15.1 %;LX/LY, 16.0 %; LX/LX 4.8 %。而在結核病病人與年齡相符合的控制組族群比較發現,結核病病人帶有會製造較高濃度MBL的基因型 (H/H) 頻率明顯比控制組高 (28.2 % vs. 17.3 %, p = 0.018)。我們更進一步利用ex vivo的系統,嘗試釐清MBL在結核病感染中扮演的角色。我們的數據顯示不同MBL 表現型的個體,雖然血清中MBL濃度不同,但影響monocytes吞噬結核菌的百分比,其能力沒有明顯差別。但是血清中存在對熱不穩定的物質,可能影響monocytes吞噬結核菌的結果。另一部分,在過去的研究中,MBL被認為是對抗伺機性感染病原菌Candida albicans (C. albicans) 的第一線防禦。因此,在這份報告中,我們利用ex vivo的系統,探討不同的 MBL-2 基因型對於C. albicans生長及細胞吞噬的影響。我們的數據顯示monocytes及neutrophils吞噬C. albicans的百分比,高 MBL 表現型的個體其能力明顯較低MBL表現型的個體好(24.2 % vs. 11.3 %; p = 0.0004及 9.2 % vs. 3.1 %; p = 0.0157)。而血清抑制C. albicans生長的現象,高 MBL 表現型的個體明顯較低MBL表現型的個體佳 (42 % vs. 18 %; p = 0.0391)。這些發現說明了MBL-2的基因型確實可以預測在互相協調的免疫防禦中,宿主受不同病原菌感染的感受性。這將對未來的個人預防醫學非常有幫助。
Mannose-binding lectin (MBL) is a serum collectin that mediates activation of complement system and is important in innate immunity. Deficiency of MBL is associated with a risk of various infections and arises from structure gene mutation in exon 1 and/or the presence of a low efficiency promoter. In this study, we analyzed the frequencies of haplotypes and genotypes of MBL-2 gene polymorphisms in 588 unrelated Chinese adults and 170 tuberculosis (TB) patients. In Chinese general population, the frequency of the codon 54 mutation of the MBL-2 gene was 17.9 % (210/1176). Additionally, for two polymorphisms at position -550 and -221 in the promoter region, the frequency of several genotypes were: HY/HY, 19.2 %; HY/LY, 28.9 %; LY/LY, 16.0 %; HY/LX, 15.1 %; LX/LY, 16.0 %; LX/LX 4.8 %. Compared with TB patients, we found that main contribution to the significant p value is due to extreme high frequency of genotypes (H/H) that corresponding to high serum MBL in patients with TB versus age-matched control subjects (28.2 % vs. 17.3 %, respectively; p = 0.018). In this study, we try to clarify the role of MBL on TB infection by ex vivo assay. We found that the phagocytosis percentage and mean fluorescence intensity (MFI) of FITC labelled M. tuberculosis in peripheral blood monocytes were not difference between high-MBL phenotypes and low-MBL individuals. However, opsonophagocytosis of M. tuberculosis by monocytes may be influenced by heat labile factors. Some previous in vivo and in vitro studies have demonstrated MBL participated in the first-line defense against Candida albicans (C. albicans), an opportunistic fungal pathogen. However, the influence of individual with various MBL-2 genotypes on yeast phagocytosis and growth are still unknown. We also established an ex vivo system to illustrate the impact of MBL on C. albicans infection. Our data demonstrated that the opsonophagocytosis of monocytes and neutrophils (24.2 % vs. 11.3 %; p = 0.0004, 9.2 % vs. 3.1 %; p = 0.0157, respectively), and C. albicans growth inhibition by plasma from high MBL phenotypes were significantly higher than low MBL phenotypes (42 % vs. 18 %; p = 0.0391). These findings indicate the genotypes of MBL-2 may predict the host infection susceptibility during compromised immune defenses. It is usefully for the predictive and prevention medicine in the future.
1. Kawasaki N, Kawasaki T, Yamashina I. Isolation and characterization of a mannan-binding protein from human serum. Journal of biochemistry, 94(3), 937-947 (1983).
2. Loris R. Principles of structures of animal and plant lectins. Biochimica et biophysica acta, 1572(2-3), 198-208 (2002).
3. Lu J, Teh C, Kishore U, Reid KB. Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system. Biochimica et biophysica acta, 1572(2-3), 387-400 (2002).
4. Hansen S, Holmskov U. Structural aspects of collectins and receptors for collectins. Immunobiology, 199(2), 165-189 (1998).
5. Sastry K, Herman GA, Day L et al. The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. The Journal of experimental medicine, 170(4), 1175-1189 (1989).
6. Guo N, Mogues T, Weremowicz S, Morton CC, Sastry KN. The human ortholog of rhesus mannose-binding protein-A gene is an expressed pseudogene that localizes to chromosome 10. Mamm Genome, 9(3), 246-249 (1998).
7. Holmskov UL. Collectins and collectin receptors in innate immunity. Apmis, 100, 1-59 (2000).
8. Wallis R. Structural and functional aspects of complement activation by mannose-binding protein. Immunobiology, 205(4-5), 433-445 (2002).
9. Sheriff S, Chang CY, Ezekowitz RA. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nature structural biology, 1(11), 789-794 (1994).
10. Jensen PH, Weilguny D, Matthiesen F, McGuire KA, Shi L, Hojrup P. Characterization of the oligomer structure of recombinant human mannan-binding lectin. The Journal of biological chemistry, 280(12), 11043-11051 (2005).
11. Thiel S, Moller-Kristensen M, Jensen L, Jensenius JC. Assays for the functional activity of the mannan-binding lectin pathway of complement activation. Immunobiology, 205(4-5), 446-454 (2002).
12. Madsen HO, Garred P, Kurtzhals JA et al. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics, 40(1), 37-44 (1994).
13. Madsen HO, Garred P, Thiel S et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol, 155(6), 3013-3020 (1995).
14. Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol, 161(6), 3169-3175 (1998).
15. Sumiya M, Super M, Tabona P et al. Molecular basis of opsonic defect in immunodeficient children. Lancet, 337(8757), 1569-1570 (1991).
16. Lipscombe RJ, Sumiya M, Hill AV et al. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Human molecular genetics, 1(9), 709-715 (1992).
17. Garred P, Larsen F, Madsen HO, Koch C. Mannose-binding lectin deficiency--revisited. Molecular immunology, 40(2-4), 73-84 (2003).
18. Naito H, Ikeda A, Hasegawa K et al. Characterization of human serum mannan-binding protein promoter. Journal of biochemistry, 126(6), 1004-1012 (1999).
19. Holmskov U, Malhotra R, Sim RB, Jensenius JC. Collectins: collagenous C-type lectins of the innate immune defense system. Immunology today, 15(2), 67-74 (1994).
20. Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunology today, 17(11), 532-540 (1996).
21. Worthley DL, Bardy PG, Mullighan CG. Mannose-binding lectin: biology and clinical implications. Internal medicine journal, 35(9), 548-555 (2005).
22. Kilpatrick DC. Mannan-binding lectin and its role in innate immunity. Transfusion medicine (Oxford, England), 12(6), 335-352 (2002).
23. Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis, 37(11), 1496-1505 (2003).
24. Jack DL, Turner MW. Anti-microbial activities of mannose-binding lectin. Biochemical Society transactions, 31(Pt 4), 753-757 (2003).
25. Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annual review of immunology, 21, 547-578 (2003).
26. Weis WI, Drickamer K, Hendrickson WA. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature, 360(6400), 127-134 (1992).
27. Summerfield JA, Sumiya M, Levin M, Turner MW. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. BMJ (Clinical research ed, 314(7089), 1229-1232 (1997).
28. Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I. Serum lectin with known structure activates complement through the classical pathway. The Journal of biological chemistry, 262(16), 7451-7454 (1987).
29. Lu JH, Thiel S, Wiedemann H, Timpl R, Reid KB. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol, 144(6), 2287-2294 (1990).
30. Yokota Y, Arai T, Kawasaki T. Oligomeric structures required for complement activation of serum mannan-binding proteins. Journal of biochemistry, 117(2), 414-419 (1995).
31. Chaka W, Verheul AF, Vaishnav VV et al. Induction of TNF-alpha in human peripheral blood mononuclear cells by the mannoprotein of Cryptococcus neoformans involves human mannose binding protein. J Immunol, 159(6), 2979-2985 (1997).
32. Jack DL, Read RC, Tenner AJ, Frosch M, Turner MW, Klein NJ. Mannose-binding lectin regulates the inflammatory response of human professional phagocytes to Neisseria meningitidis serogroup B. The Journal of infectious diseases, 184(9), 1152-1162 (2001).
33. Santos IK, Costa CH, Krieger H et al. Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infection and immunity, 69(8), 5212-5215 (2001).
34. Soell M, Lett E, Holveck F, Scholler M, Wachsmann D, Klein JP. Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release. J Immunol, 154(2), 851-860 (1995).
35. Takahashi K, Gordon J, Liu H et al. Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis. Microbes and infection / Institut Pasteur, 4(8), 773-784 (2002).
36. Mead R, Jack D, Pembrey M, Tyfield L, Turner M. Mannose-binding lectin alleles in a prospectively recruited UK population. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Lancet, 349(9066), 1669-1670 (1997).
37. Pappas PG, Rex JH, Sobel JD et al. Guidelines for treatment of candidiasis. Clin Infect Dis, 38(2), 161-189 (2004).
38. Asmundsdottir LR, Erlendsdottir H, Gottfredsson M. Increasing incidence of candidemia: results from a 20-year nationwide study in Iceland. Journal of clinical microbiology, 40(9), 3489-3492 (2002).
39. Dean DA, Burchard KW. Surgical perspective on invasive Candida infections. World journal of surgery, 22(2), 127-134 (1998).
40. Dromer F, Improvisi L, Dupont B et al. Oral transmission of Candida albicans between partners in HIV-infected couples could contribute to dissemination of fluconazole-resistant isolates. AIDS (London, England), 11(9), 1095-1101 (1997).
41. Guggenheimer J, Moore PA, Rossie K et al. Insulin-dependent diabetes mellitus and oral soft tissue pathologies: II. Prevalence and characteristics of Candida and Candidal lesions. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 89(5), 570-576 (2000).
42. Rantala A. Postoperative candidiasis. Annales chirurgiae et gynaecologiae, 205, 1-52 (1993).
43. Roilides E, Kadiltsoglou I, Zahides D, Bibashi E. Invasive candidosis in pediatric patients. Clin Microbiol Infect, 3(2), 192-197 (1997).
44. Verduyn Lunel FM, Meis JF, Voss A. Nosocomial fungal infections: candidemia. Diagnostic microbiology and infectious disease, 34(3), 213-220 (1999).
45. Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Current opinion in microbiology, 5(4), 366-371 (2002).
46. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic cell, 2(5), 1053-1060 (2003).
47. Gale CA, Bendel CM, McClellan M et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science (New York, N.Y, 279(5355), 1355-1358 (1998).
48. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell, 90(5), 939-949 (1997).
49. Neth O, Jack DL, Johnson M, Klein NJ, Turner MW. Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J Immunol, 169(8), 4430-4436 (2002).
50. Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infection and immunity, 68(2), 688-693 (2000).
51. Ip WK, Lau YL. Role of mannose-binding lectin in the innate defense against Candida albicans: enhancement of complement activation, but lack of opsonic function, in phagocytosis by human dendritic cells. The Journal of infectious diseases, 190(3), 632-640 (2004).
52. Kobayashi H, Komido M, Watanabe M et al. Structure of cell wall mannan of Candida kefyr IFO 0586. Infection and immunity, 62(10), 4425-4431 (1994).
53. Nakajima T, Ballou CE. Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. The Journal of biological chemistry, 249(23), 7679-7684 (1974).
54. Shibata N, Fukasawa S, Kobayashi H et al. Structural analysis of phospho-D-mannan-protein complexes isolated from yeast and mold form cells of Candida albicans NIH A-207 serotype A strain. Carbohydrate research, 187(2), 239-253 (1989).
55. Lillegard JB, Sim RB, Thorkildson P, Gates MA, Kozel TR. Recognition of Candida albicans by mannan-binding lectin in vitro and in vivo. The Journal of infectious diseases, 193(11), 1589-1597 (2006).
56. Small PM, Fujiwara PI. Management of tuberculosis in the United States. The New England journal of medicine, 345(3), 189-200 (2001).
57. Sutherland I, Styblo K, Sampalik M, Bleiker MA. [Annual risks of tuberculosis infection in 14 countries according to the results of tuberculosis surveys from 1948 to 1952]. Bulletin of the International Union against Tuberculosis, 45, 80-122 (1971).
58. Hill AV. The immunogenetics of human infectious diseases. Annual review of immunology, 16, 593-617 (1998).
59. Gros P, Skamene E, Forget A. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol, 127(6), 2417-2421 (1981).
60. Blackwell JM, Barton CH, White JK et al. Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Immunology letters, 43(1-2), 99-107 (1994).
61. Brown DH, Miles BA, Zwilling BS. Growth of Mycobacterium tuberculosis in BCG-resistant and -susceptible mice: establishment of latency and reactivation. Infection and immunity, 63(6), 2243-2247 (1995).
62. Wilkinson RJ, Llewelyn M, Toossi Z et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet, 355(9204), 618-621 (2000).
63. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. The New England journal of medicine, 338(10), 640-644 (1998).
64. Hoal-Van Helden EG, Epstein J, Victor TC et al. Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatric research, 45(4 Pt 1), 459-464 (1999).
65. Garred P, Richter C, Andersen AB et al. Mannan-binding lectin in the sub-Saharan HIV and tuberculosis epidemics. Scandinavian journal of immunology, 46(2), 204-208 (1997).
66. Crosdale DJ, Ollier WE, Thomson W et al. Mannose binding lectin (MBL) genotype distributions with relation to serum levels in UK Caucasoids. Eur J Immunogenet, 27(3), 111-117 (2000).
67. Koch A, Melbye M, Sorensen P et al. Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. Jama, 285(10), 1316-1321 (2001).
68. Garred P, Madsen HO, Balslev U et al. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet, 349(9047), 236-240 (1997).
69. van Helden P, Hoal-van Helden E. Mannose-binding lectin and meningococcal disease. Lancet, 354(9175), 337-338 (1999).
70. Garred P, Thiel S, Madsen HO, Ryder LP, Jensenius JC, Svejgaard A. Gene frequency and partial protein characterization of an allelic variant of mannan binding protein associated with low serum concentrations. Clinical and experimental immunology, 90(3), 517-521 (1992).
71. Garred P, Madsen HO, Kurtzhals JA et al. Diallelic polymorphism may explain variations of the blood concentration of mannan-binding protein in Eskimos, but not in black Africans. Eur J Immunogenet, 19(6), 403-412 (1992).
72. Selvaraj P, Narayanan PR, Reetha AM. Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India. Tuber Lung Dis, 79(4), 221-227 (1999).
73. Turner MW. The role of mannose-binding lectin in health and disease. Molecular immunology, 40(7), 423-429 (2003).
74. Presanis JS, Kojima M, Sim RB. Biochemistry and genetics of mannan-binding lectin (MBL). Biochemical Society transactions, 31(Pt 4), 748-752 (2003).
75. Kolble K, Lu J, Mole SE, Kaluz S, Reid KB. Assignment of the human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23 close to the surfactant protein A gene cluster. Genomics, 17(2), 294-298 (1993).
76. Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol, 163(1), 312-321 (1999).
77. Gaynor CD, McCormack FX, Voelker DR, McGowan SE, Schlesinger LS. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol, 155(11), 5343-5351 (1995).
78. Floros J, Lin HM, Garcia A et al. Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. The Journal of infectious diseases, 182(5), 1473-1478 (2000).
79. Malik S, Greenwood CM, Eguale T et al. Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. Human genetics, 118(6), 752-759 (2006).
80. Sidobre S, Nigou J, Puzo G, Riviere M. Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition. The Journal of biological chemistry, 275(4), 2415-2422 (2000).
81. Beharka AA, Gaynor CD, Kang BK, Voelker DR, McCormack FX, Schlesinger LS. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol, 169(7), 3565-3573 (2002).
82. Ferguson JS, Voelker DR, Ufnar JA, Dawson AJ, Schlesinger LS. Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J Immunol, 168(3), 1309-1314 (2002).
83. Kudo K, Sano H, Takahashi H et al. Pulmonary collectins enhance phagocytosis of Mycobacterium avium through increased activity of mannose receptor. J Immunol, 172(12), 7592-7602 (2004).
84. Garred P, Harboe M, Oettinger T, Koch C, Svejgaard A. Dual role of mannan-binding protein in infections: another case of heterosis? Eur J Immunogenet, 21(2), 125-131 (1994).
85. Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. British medical journal, 1(4857), 290-294 (1954).
86. Turner MW, Hamvas RM. Mannose-binding lectin: structure, function, genetics and disease associations. Reviews in immunogenetics, 2(3), 305-322 (2000).
87. Gupta B, Agrawal C, Raghav SK et al. Association of mannose-binding lectin gene (MBL2) polymorphisms with rheumatoid arthritis in an Indian cohort of case-control samples. Journal of human genetics, 50(11), 583-591 (2005).