簡易檢索 / 詳目顯示

研究生: 黃昱叡
Huang, Yuh-Ruey
論文名稱: 表面鍍人造矽酸鋰膜之矽奈米粉對鋰離子電池負極電化學表現增強之研究
Silicon nanoparticles coated with lithium silicate artificial SEI as advanced lithium ion battery anodes for the enhancement of electrochemical performance
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 矽酸鋰人造SEI鋰離子電池負極材料
外文關鍵詞: Lithium Silicate, Artificial SEI, Li-ion battery, Anode material, Si
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池(lithium-ion batteries)中,鋰離子扮演攜帶以及釋放電子的腳色。而電極材料則決定能容納於電池內的鋰離子數量,換言之就是電容量的大小決定於電極材料。鋰離子在正負極間進行轉換(conversion),嵌入(intercalation)和合金化(alloyed)反應以完成充電和放電。
    矽擁有著極高的電容量~3580mAh/g,是時下市面上通用的鋰電池負極材料石墨(graphite) 的電容量372mAh/g 的9倍,但在矽電極高電容量的優點下,卻有著高膨脹率~300%和電池壽命不佳的問題。奈米化後的矽粉中可大幅減少因膨脹而破裂、脫落於電極表面的情況,可延長電池壽命。但是奈米粉材的比表面積極大,於電極表面更容易與電解液起反應生成大量固態電解質介面層(solid electrolyte interphase),進而造成鋰離子的損失。本實驗以奈米矽粉(silicon)表面改質為主軸,使用陽離子交換法和類溶膠凝膠法預鍍矽酸鋰做為人造SEI於奈米矽粉表面上。
    預鍍矽酸鋰人造SEI之奈米矽粉相較於未處理奈米矽粉有較高的庫倫效率和平穩的充放電曲線,在不同循環速率(C-rate)下的200圈充放電循環後有較高的容量保留率。藉由分析充放電前後電極極片之SEM橫截面與XPS表面組成分析,可知矽酸鋰鍍膜有助於抑制SEI的生成。透過LSV和CV分析,可得知矽酸鋰鍍膜後奈米矽粉的SEI生成的化學反應電位的峰值下降且不像原生矽粉有好幾個反應電位,其鋰離子傳遞的動力學障礙也較原生矽粉為低。EIS分析則發現矽酸鋰鍍膜之奈米矽粉中的SEI膜會更快達到穩定且有較好的導電率和導離率。

    In this research, lithium silicate is employed as an artificial solid electrolyte interphase (SEI) to suppress silicon from pulverization and native SEI formation, due to the better ionic conductivity and mechanical strength comparing to native SEI. Lithium silicate of 3 wt% or 5 wt% is coated on nano-Si particles using ion exchange method followed by anneal in vacuum at 850℃ for 4hr to synthesize anode material. From the coin cells results, the 3wt% and 5wt% lithium silicate coated nano-Si anodes exhibit enhanced coulombic efficiency at first cycle, which reaches 99% and 99.5% in fewer cycles when compared to the pristine one. Moreover, lithium silicate coated nano-silicon anode exhibits better life cycle performance and capacity retention rate at both 0.2C and 0.5C. The electrochemical tests, cyclic voltammetry and electrical impedance spectroscopy provides the evidence of lithium silicate in protecting silicon anode and reducing SEI forming. X-ray photoelectron spectroscopy of the nano-Si anodes after cycling indicates LiF, one component of native SEI, becomes less or extinct when coated with lithium silicate. The results confirm that lithium silicate could act as an effective chemical and physical artificial SEI layer secured to avoid continuously consuming Li ions.

    中文摘要 I Extended Abstract II 致謝 XII 總目錄 XIII 圖目錄 XVI 表目錄 XXI 第一章 序論 1 1.1 前言 1 1.2 研究動機 3 第二章 理論基礎與文獻回顧 5 2.1 鋰離子電池 5 2.1.1鋰離子電池介紹 5 2.1.2鋰離子電池工作原理介紹 6 2.2 負極材料介紹 8 2.3 矽負極材料 11 2.3.1矽奈米線/奈米管 12 2.3.2矽奈米薄膜 15 2.3.3矽奈米粉材 19 2.4固態電解質介面層Solid Electrolyte Interphase 25 2.4.1 固態電解質介面層介紹 25 2.4.2 人造SEI與其應用 29 第三章 實驗步驟與分析儀器 33 3.1 實驗步驟 33 3.1.1實驗流程圖 33 3.1.2 實驗材料與設備 33 3.1.3 矽酸鋰鍍膜製備 34 3.1.4 鈕扣型鋰電池製備 35 3.2 分析儀器 36 3.2.1 高解析掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope) 36 3.2.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 36 3.2.3 拉曼光譜儀 (Raman Spectrometer) 37 3.2.4 X射線光電子能譜儀 (X-ray Photoelectron Spectrometer, XPS) 37 3.2.5 X射線衍射儀 (X-ray Diffractometer, XRD) 37 3.2.6 電池充放電系統 38 3.2.7 Metrohm Autolab (CV+EIS) 38 第四章 結果與討論 39 4.1 矽酸鋰鍍膜之矽粉材料分析 39 4.1.1 電極形貌【SEM】 40 4.1.2 粉材形貌【TEM】 41 4.1.3 表面組成分析【XRD】 43 4.1.4 表面組成分析【Raman】 45 4.1.5 表面組成分析【XPS】 47 4.2 充放電循環測試 50 4.2.1 定電流充放電測試 50 4.3 循環後試片分析 56 4.3.1 200圈循環後SEM分析 56 4.3.2 200圈循環後XPS分析 58 4.4 電化學分析 60 4.4.1 循環伏安法測試 60 4.4.2 電化學阻抗頻譜 64 第五章 結論 70 第六章 參考文獻 71

    [1] X. Luo, J. Wang, M. Dooner, and J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, vol. 137, pp. 511-536, 2015/01/01/ 2015, doi: https://doi.org/10.1016/j.apenergy.2014.09.081.
    [2] H. Kim, M. Seo, M. H. Park, and J. Cho, "A critical size of silicon nano-anodes for lithium rechargeable batteries," Angew Chem Int Ed Engl, vol. 49, no. 12, pp. 2146-9, Mar 15 2010, doi: 10.1002/anie.200906287.
    [3] G. Zhu, Y. Wang, S. Yang, Q. Qu, and H. Zheng, "Correlation between the physical parameters and the electrochemical performance of a silicon anode in lithium-ion batteries," Journal of Materiomics, vol. 5, no. 2, pp. 164-175, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.jmat.2019.03.005.
    [4] Y. M. Kim et al., "Titanium Silicide Coated Porous Silicon Nanospheres as Anode Materials for Lithium Ion Batteries," Electrochimica Acta, vol. 151, pp. 256-262, 2015, doi: 10.1016/j.electacta.2014.11.016.
    [5] D. Kim, M. Park, S. M. Kim, H. C. Shim, S. Hyun, and S. M. Han, "Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode," ACS Nano, vol. 12, no. 11, pp. 10903-10913, Nov 27 2018, doi: 10.1021/acsnano.8b03951.
    [6] N. Liu et al., "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes," Nat Nanotechnol, vol. 9, no. 3, pp. 187-92, Mar 2014, doi: 10.1038/nnano.2014.6.
    [7] Eurostat, "Consumption of oil in selected sectors," 2017.
    [8] S. Nowak and M. Winter, "Elemental analysis of lithium ion batteries," Journal of Analytical Atomic Spectrometry, vol. 32, no. 10, pp. 1833-1847, 2017, doi: 10.1039/c7ja00073a.
    [9] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014, doi: 10.1016/j.jpowsour.2013.11.103.
    [10] S. D. Han et al., "Intrinsic Properties of Individual Inorganic Silicon-Electrolyte Interphase Constituents," ACS Appl Mater Interfaces, vol. 11, no. 50, pp. 46993-47002, Dec 18 2019, doi: 10.1021/acsami.9b18252.
    [11] P. Peljo and H. H. Girault, "Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception," Energy & Environmental Science, vol. 11, no. 9, pp. 2306-2309, 2018, doi: 10.1039/c8ee01286e.
    [12] J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine, "High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries," Electrochemical Energy Reviews, vol. 1, no. 1, pp. 35-53, 2018, doi: 10.1007/s41918-018-0001-4.
    [13] K. Amine et al., "Nanostructured anode material for high-power battery system in electric vehicles," Adv Mater, vol. 22, no. 28, pp. 3052-7, Jul 27 2010, doi: 10.1002/adma.201000441.
    [14] M. N. Obrovac and V. L. Chevrier, "Alloy negative electrodes for Li-ion batteries," Chem Rev, vol. 114, no. 23, pp. 11444-502, Dec 10 2014, doi: 10.1021/cr500207g.
    [15] S. Zhang, "Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries," npj Computational Materials, vol. 3, no. 1, 2017, doi: 10.1038/s41524-017-0009-z.
    [16] P. Limthongkul, Y.-I. Jang, N. J. Dudney, and Y.-M. Chiang, "Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage," Acta Materialia, vol. 51, no. 4, pp. 1103-1113, 2003, doi: 10.1016/s1359-6454(02)00514-1.
    [17] V. B. Shenoy, P. Johari, and Y. Qi, "Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study," Journal of Power Sources, vol. 195, no. 19, pp. 6825-6830, 2010, doi: 10.1016/j.jpowsour.2010.04.044.
    [18] M. N. Obrovac and L. Christensen, "Structural Changes in Silicon Anodes during Lithium Insertion/Extraction," Electrochemical and Solid-State Letters, vol. 7, no. 5, 2004, doi: 10.1149/1.1652421.
    [19] V. L. Chevrier, J. W. Zwanziger, and J. R. Dahn, "First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations," Journal of Alloys and Compounds, vol. 496, no. 1-2, pp. 25-36, 2010, doi: 10.1016/j.jallcom.2010.01.142.
    [20] "<Liz&, a Zintl Phase as Well as a Hume-Rothery Phase.pdf>."
    [21] "<STRUCTURE AND CHEMICAL BONDING IN ZINTL-PHASES CONTAINING LITHIUM.pdf>."
    [22] J. Y. Kwon, J. H. Ryu, and S. M. Oh, "Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries," Electrochimica Acta, vol. 55, no. 27, pp. 8051-8055, 2010, doi: 10.1016/j.electacta.2010.01.054.
    [23] W. Xu, S. S. S. Vegunta, and J. C. Flake, "Surface-modified silicon nanowire anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 20, pp. 8583-8589, 2011, doi: 10.1016/j.jpowsour.2011.05.059.
    [24] "<Solution-Grown Silicon Nanowires for lithium ion battery anode.pdf>."
    [25] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," Nat Nanotechnol, vol. 3, no. 1, pp. 31-5, Jan 2008, doi: 10.1038/nnano.2007.411.
    [26] C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes," Journal of Power Sources, vol. 189, no. 2, pp. 1132-1140, 2009, doi: 10.1016/j.jpowsour.2009.01.007.
    [27] Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, "Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings," Energy & Environmental Science, vol. 5, no. 7, 2012, doi: 10.1039/c2ee21437g.
    [28] T. Song et al., "Arrays of sealed silicon nanotubes as anodes for lithium ion batteries," Nano Lett, vol. 10, no. 5, pp. 1710-6, May 12 2010, doi: 10.1021/nl100086e.
    [29] Z. Wen et al., "Silicon nanotube anode for lithium-ion batteries," Electrochemistry Communications, vol. 29, pp. 67-70, 2013, doi: 10.1016/j.elecom.2013.01.015.
    [30] C. Gao, Z. Lu, and Y. Yin, "Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods," Langmuir, vol. 27, no. 19, pp. 12201-8, Oct 4 2011, doi: 10.1021/la203196a.
    [31] "<Amorphous silicon as a possible anode material for Li-ion batteries.pdf>."
    [32] H. Guo, H. Zhao, C. Yin, and W. Qiu, "A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries," Materials Science and Engineering: B, vol. 131, no. 1-3, pp. 173-176, 2006, doi: 10.1016/j.mseb.2006.04.008.
    [33] A. Bordes, E. De Vito, C. Haon, C. Secouard, A. Montani, and P. Marcus, "Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM," ACS Appl Mater Interfaces, vol. 7, no. 50, pp. 27853-62, Dec 23 2015, doi: 10.1021/acsami.5b09261.
    [34] J. P. Maranchi, A. F. Hepp, and P. N. Kumta, "High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries," Electrochemical and Solid-State Letters, vol. 6, no. 9, 2003, doi: 10.1149/1.1596918.
    [35] A. Mukanova, A. Jetybayeva, S.-T. Myung, S.-S. Kim, and Z. Bakenov, "A mini-review on the development of Si-based thin film anodes for Li-ion batteries," Materials Today Energy, vol. 9, pp. 49-66, 2018, doi: 10.1016/j.mtener.2018.05.004.
    [36] S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, "A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life," Journal of Power Sources, vol. 136, no. 2, pp. 303-306, 2004, doi: 10.1016/j.jpowsour.2004.03.014.
    [37] G.-b. Cho et al., "Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries," Electrochimica Acta, vol. 224, pp. 649-659, 2017, doi: 10.1016/j.electacta.2016.12.067.
    [38] X. Xiao, P. Liu, M. W. Verbrugge, H. Haftbaradaran, and H. Gao, "Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries," Journal of Power Sources, vol. 196, no. 3, pp. 1409-1416, 2011, doi: 10.1016/j.jpowsour.2010.08.058.
    [39] C. Yu et al., "Silicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress Relaxation," Advanced Energy Materials, vol. 2, no. 1, pp. 68-73, 2012, doi: 10.1002/aenm.201100634.
    [40] R. S. Omampuliyur et al., "Nanostructured Thin Film Silicon Anodes for Li-Ion Microbatteries," J Nanosci Nanotechnol, vol. 15, no. 7, pp. 4926-33, Jul 2015, doi: 10.1166/jnn.2015.9831.
    [41] X. H. Huang, J. B. Wu, Y. Q. Cao, P. Zhang, Y. Lin, and R. Q. Guo, "Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries," Electrochimica Acta, vol. 203, pp. 213-220, 2016, doi: 10.1016/j.electacta.2016.04.041.
    [42] F. Dogan, L. D. Sanjeewa, S.-J. Hwu, and J. T. Vaughey, "Electrodeposited copper foams as substrates for thin film silicon electrodes," Solid State Ionics, vol. 288, pp. 204-206, 2016, doi: 10.1016/j.ssi.2016.02.001.
    [43] M. T. Demirkan, L. Trahey, and T. Karabacak, "Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries," Journal of Power Sources, vol. 273, pp. 52-61, 2015, doi: 10.1016/j.jpowsour.2014.09.027.
    [44] J.-B. Kim, H.-Y. Lee, K.-S. Lee, S.-H. Lim, and S.-M. Lee, "Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries," Electrochemistry Communications, vol. 5, no. 7, pp. 544-548, 2003, doi: 10.1016/s1388-2481(03)00120-6.
    [45] Q. Zhang, J. Liu, Z.-Y. Wu, J.-T. Li, L. Huang, and S.-G. Sun, "3D nanostructured multilayer Si/Al film with excellent cycle performance as anode material for lithium-ion battery," Journal of Alloys and Compounds, vol. 657, pp. 559-564, 2016, doi: 10.1016/j.jallcom.2015.10.123.
    [46] H.-J. Ahn, Y.-S. Kim, W. B. Kim, Y.-E. Sung, and T.-Y. Seong, "Formation and characterization of Cu–Si nanocomposite electrodes for rechargeable Li batteries," Journal of Power Sources, vol. 163, no. 1, pp. 211-214, 2006, doi: 10.1016/j.jpowsour.2005.12.077.
    [47] A. Mukanova, A. Nurpeissova, S. S. Kim, M. Myronov, and Z. Bakenov, "N-Type Doped Silicon Thin Film on a Porous Cu Current Collector as the Negative Electrode for Li-Ion Batteries," ChemistryOpen, vol. 7, no. 1, pp. 92-96, Jan 2018, doi: 10.1002/open.201700162.
    [48] A. A. Arie and J. K. Lee, "Electrochemical Properties of P-Doped Silicon Thin Film Anodes of Lithium Ion Batteries," Materials Science Forum, vol. 737, pp. 80-84, 2013, doi: 10.4028/
    [49] Xiao Hua Liu, Li Zhong, and S. Huang, "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," ACS Nano, vol. VOL. 6, NO. 2, 1522–1531, 2012, 2012.
    [50] W.-R. Liu, M.-H. Yang, H.-C. Wu, S. M. Chiao, and N.-L. Wu, "Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder," Electrochemical and Solid-State Letters, vol. 8, no. 2, 2005, doi: 10.1149/1.1847685.
    [51] N. S. Hochgatterer et al., "Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability," Electrochemical and Solid-State Letters, vol. 11, no. 5, 2008, doi: 10.1149/1.2888173.
    [52] U. S. Vogl, P. K. Das, A. Z. Weber, M. Winter, R. Kostecki, and S. F. Lux, "Mechanism of interactions between CMC binder and Si single crystal facets," Langmuir, vol. 30, no. 34, pp. 10299-307, Sep 2 2014, doi: 10.1021/la501791q.
    [53] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries," The Journal of Physical Chemistry C, vol. 115, no. 27, pp. 13487-13495, 2011, doi: 10.1021/jp201691g.
    [54] S. Komaba et al., "Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries," The Journal of Physical Chemistry C, vol. 116, no. 1, pp. 1380-1389, 2011, doi: 10.1021/jp204817h.
    [55] L. Wei, C. Chen, Z. Hou, and H. Wei, "Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries," Sci Rep, vol. 6, p. 19583, Jan 20 2016, doi: 10.1038/srep19583.
    [56] M. Sohn, D. S. Kim, H.-I. Park, J.-H. Kim, and H. Kim, "Porous Silicon–Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes," Electrochimica Acta, vol. 196, pp. 197-205, 2016, doi: 10.1016/j.electacta.2016.02.101.
    [57] H. Wang, J. Xie, S. Zhang, G. Cao, and X. Zhao, "Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials," RSC Advances, vol. 6, no. 74, pp. 69882-69888, 2016, doi: 10.1039/c6ra13114j.
    [58] Y. Chen et al., "Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries," Journal of Power Sources, vol. 342, pp. 467-475, 2017, doi: 10.1016/j.jpowsour.2016.12.089.
    [59] X. Shen et al., "Research progress on silicon/carbon composite anode materials for lithium-ion battery," Journal of Energy Chemistry, vol. 27, no. 4, pp. 1067-1090, 2018, doi: 10.1016/j.jechem.2017.12.012.
    [60] F. Luo et al., "Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries," Journal of The Electrochemical Society, vol. 162, no. 14, pp. A2509-A2528, 2015, doi: 10.1149/2.0131514jes.
    [61] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, "Reversible storage of lithium in silver-coated three-dimensional macroporous silicon," Adv Mater, vol. 22, no. 20, pp. 2247-50, May 25 2010, doi: 10.1002/adma.200903755.
    [62] M. Miyachi, H. Yamamoto, and H. Kawai, "Electrochemical Properties and Chemical Structures of Metal-Doped SiO Anodes for Li-Ion Rechargeable Batteries," Journal of The Electrochemical Society, vol. 154, no. 4, 2007, doi: 10.1149/1.2455963.
    [63] T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo, and J. W. Choi, "Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes," Nano Lett, vol. 12, no. 2, pp. 802-7, Feb 8 2012, doi: 10.1021/nl203817r.
    [64] M. Su et al., "Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries," Powder Technology, vol. 323, pp. 294-300, 2018, doi: 10.1016/j.powtec.2017.09.005.
    [65] J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, and Y. Wang, "Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance," Journal of Power Sources, vol. 342, pp. 529-536, 2017, doi: 10.1016/j.jpowsour.2016.12.094.
    [66] E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems the solid electrolyte interphase," Journal of The Electrochemical Society, vol. 126, p. 12, 1979.
    [67] E. Peled, D. Golodnitsky, and G. Ardel, "Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes," (in English), Journal of the Electrochemical Society, vol. 144, no. 8, pp. L208-L210, Aug 1997, doi: Doi 10.1149/1.1837858.
    [68] A. Tokranov, B. W. Sheldon, C. Li, S. Minne, and X. Xiao, "In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries," ACS Appl Mater Interfaces, vol. 6, no. 9, pp. 6672-86, May 14 2014, doi: 10.1021/am500363t.
    [69] K. Schroder et al., "The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes," Chemistry of Materials, vol. 27, no. 16, pp. 5531-5542, 2015, doi: 10.1021/acs.chemmater.5b01627.
    [70] G. M. Veith, M. Doucet, R. L. Sacci, B. Vacaliuc, J. K. Baldwin, and J. F. Browning, "Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive," Sci Rep, vol. 7, no. 1, p. 6326, Jul 24 2017, doi: 10.1038/s41598-017-06555-8.
    [71] S. Malmgren et al., "Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy," Electrochimica Acta, vol. 97, pp. 23-32, 2013, doi: 10.1016/j.electacta.2013.03.010.
    [72] K. Guo, R. Kumar, X. Xiao, B. W. Sheldon, and H. Gao, "Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes," Nano Energy, vol. 68, 2020, doi: 10.1016/j.nanoen.2019.104257.
    [73] E. Peled, D. B. Tow, and A. Merson, "Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies," Journal of Power Sources, vol. 97-98(2001), 2000.
    [74] A. M. Andersson and K. Edström, "Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite," Journal of The Electrochemical Society, vol. 148, no. 10, 2001, doi: 10.1149/1.1397771.
    [75] A. M. Tripathi, W. N. Su, and B. J. Hwang, "In situ analytical techniques for battery interface analysis," Chem Soc Rev, vol. 47, no. 3, pp. 736-851, Feb 5 2018, doi: 10.1039/c7cs00180k.
    [76] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries," npj Computational Materials, vol. 4, no. 1, 2018, doi: 10.1038/s41524-018-0064-0.
    [77] P. Lu and S. J. Harris, "Lithium transport within the solid electrolyte interphase," Electrochemistry Communications, vol. 13, no. 10, pp. 1035-1037, 2011, doi: 10.1016/j.elecom.2011.06.026.
    [78] K. Edström, M. Herstedt, and D. P. Abraham, "A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries," Journal of Power Sources, vol. 153, no. 2, pp. 380-384, 2006, doi: 10.1016/j.jpowsour.2005.05.062.
    [79] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010, doi: 10.1016/j.electacta.2010.05.072.
    [80] N. Takenaka, Y. Suzuki, H. Sakai, and M. Nagaoka, "On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules," The Journal of Physical Chemistry C, vol. 118, no. 20, pp. 10874-10882, 2014, doi: 10.1021/jp5018696.
    [81] K. Kanamura, H. Tamura, S. Shiraishi, and Zen-ichiroTakehara, "Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes," Journal of Electroanalytical Chemistry vol. 394(1995)49-62, 1995.
    [82] Y. Wang, "Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries: Reduction Mechanisms of Ethylene Carbonate," J. Am. Chem. Soc., vol. 2001, 123, 11708-11718, 2001.
    [83] W. Huang et al., "Dynamic Structure and Chemistry of the Silicon Solid-Electrolyte Interphase Visualized by Cryogenic Electron Microscopy," Matter, vol. 1, no. 5, pp. 1232-1245, 2019, doi: 10.1016/j.matt.2019.09.020.
    [84] B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau, and K. Edström, "Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study," Chemistry of Materials, vol. 25, no. 3, pp. 394-404, 2013, doi: 10.1021/cm303399v.
    [85] N. Dupre et al., "Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration," Chem Mater, vol. 28, no. 8, pp. 2557-2572, Apr 26 2016, doi: 10.1021/acs.chemmater.5b04461.
    [86] B. Philippe et al., "Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy," Chemistry of Materials, vol. 24, no. 6, pp. 1107-1115, 2012, doi: 10.1021/cm2034195.
    [87] Y. Jin et al., "Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%," Energy & Environmental Science, vol. 10, no. 2, pp. 580-592, 2017, doi: 10.1039/c6ee02685k.
    [88] J.-I. Lee et al., "High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers," Energy & Environmental Science, vol. 8, no. 7, pp. 2075-2084, 2015, doi: 10.1039/c5ee01493j.
    [89] J. Zhao et al., "Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries," J Am Chem Soc, vol. 137, no. 26, pp. 8372-5, Jul 8 2015, doi: 10.1021/jacs.5b04526.
    [90] J. Wang et al., "Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-Ion Batteries," Nano Lett, vol. 18, no. 11, pp. 7060-7065, Nov 14 2018, doi: 10.1021/acs.nanolett.8b03065.
    [91] H. Pfeiffer, "Synthesis of lithium silicates," Journal of Nuclear Materials, vol. 257 309-317, 1998.
    [92] O. N. Koroleva, "The structure of lithium silicate melts revealed by high-temperature Raman spectroscopy," Spectroscopy Letters, vol. 50, no. 5, pp. 257-264, 2017, doi: 10.1080/00387010.2017.1316743.
    [93] A. Burrell, "Silicon Electrolyte Interface Stabilization," NREL, 2019.
    [94] B. Wang et al., "Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries," ACS Appl Mater Interfaces, vol. 9, no. 37, pp. 31786-31793, Sep 20 2017, doi: 10.1021/acsami.7b07113.
    [95] Q. Song et al., "Defect-Rich Nickel Nanoparticles Supported on SiC Derived from Silica Fume with Enhanced Catalytic Performance for CO Methanation," Catalysts, vol. 9, no. 3, 2019, doi: 10.3390/catal9030295.
    [96] J. Hennessy and S. Nikzad, "Atomic Layer Deposition of Lithium Fluoride Optical Coatings for the Ultraviolet," Inorganics, vol. 6, no. 2, 2018, doi: 10.3390/inorganics6020046.
    [97] A. C. Kozen et al., "Atomic Layer Deposition and in Situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide," The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 27749-27753, 2014, doi: 10.1021/jp509298r.
    [98] A. Kaur, P. Chahal, and T. Hogan, "Selective Fabrication of SiC/Si Diodes by Excimer Laser Under Ambient Conditions," IEEE Electron Device Letters, vol. 37, no. 2, pp. 142-145, 2016, doi: 10.1109/led.2015.2508479.
    [99] H.-W. Yang, N. Kang, S.-T. Myung, J. Kim, and S.-J. Kim, "Exceptional Effect of Benzene in Uniform Carbon Coating of SiOxNanocomposite for High-Performance Li-Ion Batteries," Journal of The Electrochemical Society, vol. 165, no. 7, pp. A1247-A1253, 2018, doi: 10.1149/2.0291807jes.
    [100] T. M. Fears et al., "Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry," Phys Chem Chem Phys, vol. 18, no. 20, pp. 13927-40, May 18 2016, doi: 10.1039/c6cp00978f.
    [101] M. J. Loveridge et al., "Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon-graphene hybrid anodes," Phys Chem Chem Phys, vol. 18, no. 44, pp. 30677-30685, Nov 9 2016, doi: 10.1039/c6cp06788c.
    [102] L. Wang and J. Zhao, "Electrochemical Impedance Spectroscopy (EIS) Study of LiNiCoMnO for Li-ion Batteries," Int. J. Electrochem. Sci, vol. Vol. 7, 2012, 2012.
    [103] J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan, "Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy," Electrochimica Acta, vol. 56, no. 11, pp. 3981-3987, 2011, doi: 10.1016/j.electacta.2011.02.014.
    [104] M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, and J. Jamnik, "The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc," Electrochemical and Solid-State Letters, vol. 11, no. 10, 2008, doi: 10.1149/1.2964220.
    [105] Y. Zhou et al., "Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery," Nat Nanotechnol, vol. 15, no. 3, pp. 224-230, Mar 2020, doi: 10.1038/s41565-019-0618-4.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE