簡易檢索 / 詳目顯示

研究生: 林呈澤
Lin, Cheng-Ze
論文名稱: 深度學習在橢圓曲線密碼學中的應用
Application of deep learning in elliptic curve cryptography
指導教授: 蕭仁傑
Hsiao, Jen-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 27
中文關鍵詞: 橢圓曲線加密深度學習
外文關鍵詞: Elliptic curve cryptography, Deep learning
相關次數: 點閱:128下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文本基於橢圓曲線迪菲-赫爾金鑰交換協議 (ECDH),測試類神經網路在讀取 加密訊息與過程中的公開資訊後,是否可以對原本未加密的訊息進行最低有效位 (Least Significant Bit) 的判斷,並討論對於驗證資料類神經網路模型的表現。本文將 問題歸類為深度學習中的分類問題 (Classification),且使用深度學習中的監督式學習 (Supervised learning)。過程中為使模型最佳化順利,我們將輸入資料進行了二進位轉 換。根據實驗結果,模型可成功判斷最低有效位,且模型輸出的正確率高於 0.97。

    In this paper, we study the performance of deep learning on the computation of the least significant bit derived from the elliptic curves cryptography. Here we regard the prob- lem as a classification problem and use the supervised learning in deep learning. In order to optimize the model smoothly, we turn the input data into binary representations. Ac- cording to the experimental results, the model can successfully judge the least significant bit and the accuracy is higher than 0.97.

    摘要.............................................................. i 英文延伸摘要.............................................. ii 誌謝............................................................ vi Table of Contents................................... vii List of Tables........................................... ix List of Figures........................................... x Chapter 1. 簡介.......................................... 1 簡介............................................................ 1 Chapter 2. 橢圓曲線密碼學...................... 2 密碼學 ....................................................... 2 橢圓曲線密碼學............................................. 4 Chapter 3. 類神經網路.............................. 12 類神經網路................................................ 12 類神經網路的結構..................................... 12 模型變數調整 ........................................... 16 Chapter 4. 研究方法與結果...................... 21 研究方法.................................................... 21 結果與討論................................................ 24 References................................................ 27

    [1] D. Coppersmith, I. Shparlinski (2000). On polynomial approximation of the discrete logarithm and the Diffie–Hellman mapping. Journal of Cryptology, vol.13, pp. 339- 360.
    [2] E.C. Laskari, G.C. Meletiou, M.N. Vrahatis, E.C. Laskari, G.C. Meletiou, M.N. Vra- hatis (2005). Aitken and neville inverse interpolation methods over finite fields. Applied Numerical Analysis & Computational Mathematics, vol. 2, pp. 100-107.
    [3] U. Maurer, S. Wolf (1999). The relationship between breaking the Diffie–Hellman protocol and computing discrete logarithms. SIAM Journal on Computing, vol. 28, pp. 1689-1721.
    [4] G.C. Meletiou, G.L. Mullen (1992). A note on discrete logarithms in finite fields. Ap- plicable Algebra in Engineering, Communication and Computing, vol. 3, pp. 75-79.
    [5] A. Winterhof (2002). Polynomial interpolation of the discrete logarithm. Designs, Codes and Cryptography, vol 25, pp. 63-72.
    [6] E.C. Laskari, G.C. Meletiou,Y.C., Stamatiou,D.K. Tasoulis, M.N. Vrahatis (2007). As- sessing the effectiveness of artificial neural networks on problems related to elliptic curve cryptography. Mathematical and Computer Modelling, vol. 46, pp.174-179
    [7] Y. Lecun, Y. Bengio, G. Hinton (2015). Deep learning. Nature, vol. 521, pp. 436-444.
    [8] J. Schmidhuber (2015). Deep learning in neural networks: An overview. Neural Net-
    works, vol. 61, 85–117
    [9] 王智弘 (譯) 網路安全與密碼學概論 (2014) (原著:A. Forouzan (2007). Cryptog-
    raphy and Network Security
    [10] N. Koblitz (1987). Mathematics of Computation, vol. 48, pp. 203-209
    [11] Silverman,J.H.(1986).Thearithmeticofellipticcurves.Graduatetextsinmathematics
    [12] F. William (1969). Algebraic curves. An introduction to algebraic geometry
    [13] Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747.
    [14] BEZOUTTHEOREM.Retrievedfromhttp://www.http://math.mit.edu/lguth/PolyMethod/lect13.pdf (May 06, 2020)

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE