簡易檢索 / 詳目顯示

研究生: 黃瑋斌
Huang, Wei-Bin
論文名稱: 可撓式頂部發射高分子發光二極體
Flexible Top-Emission Polymer Light-Emitting Diodes
指導教授: 蘇炎坤
Su, Yan-Kuin
莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 149
中文關鍵詞: 可撓式頂部發射有機高分子發光二極體
外文關鍵詞: Flexible, Top-Emission, Organic, PLED
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主要是以高分子黃綠光"High yellow"poly (para-phenylene vinylene) (HYPPV)及新型藍光材料(blue255)製作可撓式頂部高分子發光二極體,本實驗所使用的軟性基板有Cyclo olefin copolymer(COC)、poly(ethy1ene naphthalate)(PEN)及Poly(ethylene terephthalate) (PET),首先找出有機溶液的最佳濃度,然後將此濃度套用在可撓式頂部高分子發光二極體,本論文的基本元件結構為Ag/PEDOT:PSS/EML/Ca/Ag,其中Ag為在底部做為陽極為元件注入電洞,除此之外Ag也可以作為頂部發光的鏡子,PEDOT:PSS是當做電洞傳輸層,而EML為發光層,Ca/Ag則為頂部發射元件半透明陰極,研究可分成兩個部分:
    第一部分以HYPPV為發光層的元件的研究,為改善元件的效率對陽極Ag進行紫外光臭氧(UV-ozone)處理製程,不只使Ag功函數上升提高電洞注入能力而且增加Ag表面對於PEDOT:PSS溶液的親和力而使PEDOT:PSS成膜性更好,進而使元件效率從2.31提升到3.3 cd/A,亮度從8907 cd/m2提升到12487 cd/m^2;並且調整半透明陰極Ca與Ag的穿透率與電性達到最理想化,使元件效率進一步提升至11.57 cd/A,亮度至25718 cd/m^2 。
    第二部分是將新型的藍光材料blue255則套用第一部分的研究參數,並且進一步對於藍光材料做熱退火處理,然後改變以PVK做為電洞注入層,使效率從原來的0.056 cd/A 增進到0.21 cd/A,發光亮度從102.5cd/m^2增加到248 cd/m^2。

    The primary research of my thesis is the fabrication of flexible top-emission polymer light-emitting diode (FTPLED) based on two polymer,"High yellow" poly (para-phenylene vinylene) (HYPPV) as a green-yellow emitter, and Blue255 polymer as a new blue emitter. Three different flexible substrates: Cyclo olefin copolymer(COC)、poly(ethy1ene naphthalate)(PEN) and Poly(ethylene terephthalate) (PET) are used in my research. At first, we would find the best polymer concentration and make the parameter to imitate a emission layer of FTPLED. In my study, the fundamental structure of device is Ag/PEDOT:PSS/EML/Ca/Ag. The leftmost Ag is utilized as anode. Beside, the leftmost Ag is used as mirror which reflects the light back to emitting layer. PEDOT:PSS film serves as hole transport layer, EML means polymer emission layer. The Ca/Ag is semi-transparent cathode of device. My research is separated to two parts :
    In first part, the research is FTPLED based on HY-PPV. HY-PPV is used as EML. To improve efficiency of device, the anode Ag is proceed UV-ozone treatment. The treatment not only increases the work function of Ag resulting in the enhancement of hole injection ability, but also enhances the affinity of Ag surface to PEDOT:PSS solvent resulting in enhancement of the PEDOT:PSS film quality. Device efficiency increases from 2.31 to 3.3 cd/A, and luminance increases from 8907 cd/m^2 to 12487 cd/m^2. The transmittance and electric property of semi-transparent cathode is optimized by modulation of thickness. Finally, efficiency of device is improved to 11.57 cd/A and luminance is improved to 25718 cd/m^2.
    In second part, the optimization process parameters of FTPLED found in first part are completely imitated to the device used Blue255 as EML. The blue material is treated by thermal annealing for improving efficiency. Furthermore, PVK is introduced as holes transporting layer (HTL). The HTL results in device efficiency increasing from 0.056 to 0.21 cd/A (5X) and luminance increasing from 102.5 to 248 cd/m^2 (2.5X).

    Content Abstract (in Chinese) I Abstract (in English) III Acknowledgment (in Chinese) V Content VI Figure Caption X Table Caption XIV Chapter 1 Introduction 1 1.1 Development of Organic Electroluminescence Devices 1 1.2 OLEDs and PLEDs 2 1.3 The advantages of OLEDs / PLEDs 2 1.4 The disadvantages of OLEDs 4 1.5 The disadvantages of PLEDs 5 1.6 PLED based on flexible substrate 6 1.7 Motivation 6 1.7.1 Flexible top- emission PLED 6 1.7.2 Optimization of top device 7 1.7.3 New blue material B255 7 1.8 Organization of this thesis 8 Chapter 2 Basic Concepts and Device Operations of Polymer Light-Emitting Diodes 9 2.1 The basic structure of PLEDs 9 2.2 The functional layers of PLEDs 10 2.2.1 Anode 10 2.2.2 The functional polymer layer 11 2.2.3 Cathode 13 2.3 The principle of operation mechanism 15 2.3.1 The mechanism of emission generation 15 2.3.2 The definition of device efficiency 20 2.4 The degradation of organic device 26 Chapter 3 Experimental procedures and systems 28 3.1 The aim of this research 28 3.2 The Materials 29 3.2.1 Substrates 29 3.2.2 Anode 30 3.2.3 Hole injection layer 31 3.2.4 Hole transporting layer 32 3.2.5 Emission layer 33 3.2.6 Solvent used in polymer layers 34 3.3 Process 36 3.3.1 A preamble of process 36 3.3.2 Pre-process 38 3.3.2.1 Bottom device 38 3.3.2.2 Clean substrates 41 3.3.2.3 Top device 44 3.3.3 Device process 45 3.4 Measurement systems 47 3.4.1 Current vs. Voltage measurement 47 3.4.2 Optical Measurements 48 3.4.3 Contact angle and surface free energy 50 3.4.4 Absorption and Transmittance 51 3.4.5 Atomic Force Microscope (AFM) 52 3.4.6 X-ray Photoelectron Spectroscopy (XPS) analysis 55 3.4.7 Ultraviolet Photoemission Spectroscopy (UPS) analysis 55 3.4.8 Thermogravimetric Analyzer (TGA) 56 3.4.9 Differential Scanning Calorimeter (DSC) analysis 56 Chapter 4 Results and discussions – Part I 57 4.1 Preamble 57 4.2 HY-PPV test 57 4.2.1 Discussions of HY-PPV test 63 4.2.2 EL spectrum and CIE coordinate 63 4.2.3 Summary of HY-PPV test 65 4.2 Top device configuration 65 4.3.1 Discussions of top configuration device 70 4.3.2 EL spectrum and CIE coordinate 75 4.3.3 Summary of top configuration device 77 4.3 The effect of UV-ozone treatment in Ag. 77 4.4.1Discussions of the effect of UV-ozone treatment 82 4.4.2 Summary of the effect of UV-ozone treatment 92 4.5 The modulation of cathode and flexible substrate effect 92 4.5.1 Discussions of the modulation of cathode (Ag) 96 4.5.2 Discussions of the modulation of cathode (Ca) 98 4.5.3 Discussions of flexible substrate effect 103 4.5.3 Summary of the modulation of cathode and flexible substrate effect 108 Chapter 5 Results and discussions – Part II 109 5.1 Preamble 109 5.2 B255 test 109 5.2.1 Discussions of B255 test 117 5.2.2 EL & PL spectrum and CIE coordinate 117 5.2.3 Summary of B255 test 120 5.3 Thermal annealing effect of B255 120 5.3.1 Discussions of thermal annealing effect (Temperature) 125 5.3.2 Discussions of thermal annealing effect (Time) 127 5.3.3 Summary of thermal annealing effect of B255 130 5.4 Bi-layer structure of B255 130 5.4.1 Discussions of Bi-layer structure of B255 138 5.4.2 Summary of Bi-layer structure of B255 138 Chapter 6 Conclusion and future work 139 Reference 142 Figure Caption Fig. 1.3-1 (a)Thinner and light weight (b)Flexibility display……….....………....…...4 Fig. 2.1-1 (a)The basic consist of FTPLEDs (b) The two ways of manufacturing PLEDs (I) Spin coating (II) Ink-jet printing…………...........………….......9 Fig. 2.3.1-1 Basic emission mechanism of a PLED………………….……...…...…....16 Fig. 2.3.1-2 (a) Singlet state and Triplet state (b) Fluorescence emission mechanisms and phosphorescence emission mechanisms............................................16 Fig. 3.2.1-1 The chemical structure of substrate (a) COC (Cyclic olefin copolymer) (b) PEN (Polyethylene naphthalate) (c) PET (Polyethylene terephthalate)………………………...…………………………..…….....30 Fig. 3.2.2-1 The chemical structure of PEDOT: PSS…………………..…….…….…32 Fig. 3.2.4-1 The chemical structure of (a)PVK (b)HY-PPV……………...…….……33 Fig. 3.2.6-1 The chemical structure of solvent (a)Toluene (b)P-xylene (c)Dichlorobenzene…………………………………………………...……35 Fig. 3.3.1-1 (a)(b) The situation of flexible sample on vacuum chuck, (c)the solid aluminum slice…………………………………...……….......37 Fig. 3.3.1-2 The flow chart of my experimental procedure………………..…...……38 Fig. 3.3.2.1-1 (a) Patterned ITO original substrate,(b) Single sample, (c)The pattern of the sample after cathode deposited…………………………………...…39 Fig. 3.3.2.2-1 (a) Non-UV treatment sample (b) UV 45mins sample………………......44 Fig. 3.3.3-1 (a) The consist of a sample (b) The structure of single device……….....46 Fig. 3.4.1-1 (a) The measurement system (b) The schematic diagram of measurement system……………………………..………………………47 Fig. 3.4.2-1 (a) Keithley 2400 (upper) & 2000 (lower) (b) LS-100 (c) USB 2000…...49 Fig. 3.4.3-1 The schematic diagram of contact angle measurement………….…......50 Fig. 3.4.3-2 A drop of water on (a) hydrophobic, (b) hydrophilic film……………...51 Fig. 3.4.4-1 The schematic diagram of UV-Vis spectrophotometer…………….…...52 Fig. 3.4.5-1 The schematic diagram of AFM……………………………………….....53 Fig. 4.2-1 (a) The structure of device (b) The schematic diagram of energy band gap (I)…………………………………………………..…………………………59 Fig. 4.2-2 (a) I-V curve (b) L-V curve (c) E-J curve (I)……………………....……....62 Fig. 4.2.2-1 The EL spectrum of HY-PPV………………………………………….....63 Fig. 4.2.2-2 The CIE diagram of HY-PPV………………………………………...…..64 Fig. 4.3-1 (a) The structure of device (b) The schematic diagram of energy band gap (II)…………………………………………………………………………....66 Fig 4.3-2 (a) I-V curve (b) L-V curve (c) E-J curve (II)………………..…………….69 Fig. 4.3.1-1 Top view of a sample……………………………………………………...71 Fig. 4.3.1-2 The transmittance of top device and bottom device…………………….71 Fig. 4.3.1-3 The absorption of top device and bottom device………………………..72 Fig. 4.3.1-4 The reflectivity of top device cathode……………………………………73 Fig. 4.3.2-1 The EL spectrum of top and bottom device……………………………..75 Fig. 4.3.2-2 The CIE diagram of top and bottom device……………………………..76 Fig 4.4-1 (a) The structure of device (b) The schematic diagram of energy band gap (III)…………………………………………………………………………...78 Fig. 4.4-2 (a) I-V curve (b) L-V curve (c) E-J curve (III)………………...…………..81 Fig. 4.4.1-1 XPS analysis of (a) Ag 3d, (b) O 1s orbit on Ag anode………….………83 Fig. 4.4.1-2 Decompositions of Gaussian functions in (a)O 1s (b)Ag 3d orbit of non-UV and UV 1 min Ag surface………………………………………..84 Fig. 4.4.1-3 UPS analysis of Ag anode…………………………………………………85 Fig. 4.4.1-4 The cross-section image of a drop water(a)Non-UV (b) UV 1min (c)UV 3mins (d) UV 5mins on Ag surface………………………………………..88 Fig. 4.4.1-5 The AFM image of PEDOT: PSS film which coated on (a)Non-UV (b) UV 1min (c)UV 3mins (d) UV 5mins treatment Ag anode………………89 Fig. 4.4.1-6 The reflectivity of Ag surface…………………………………………......91 Fig. 4.5-1 (a) I-V curve (b) L-V curve (c) E-J curve (IV)………...…………………. 95 Fig. 4.5.1-1 The transmittance of cathode (I)……...………………………………….96 Fig. 4.5.2-1 (a) I-V curve (b) L-V curve (c) E-J curve (V)…………...……………. 101 Fig. 4.5.2-2 The transmittance of cathode (II)……………...……………………….102 Fig. 4.5.3-1 (a) I-V curve (b) L-V curve (c) E-J curve (VI)……………...………….106 Fig. 5.2-1 UPS analysis of B255……………………...……………………………….111 Fig. 5.2-2 The absorption spectrum of B255…………………...……………………111 Fig. 5.2-3 (a) The structure of device (b) The schematic diagram of energy band gap (IV)………………………………………………………………………….113 Fig. 5.2-4 (a) I-V curve (b) L-V curve (c) E-J curve (VII)…………………...……..116 Fig. 5.2.2-1 The EL spectrum of B255……...…………………………………….…..118 Fig. 5.2.2-2 The PL spectrum of B255…………………...…………………………...118 Fig. 5.2.2-3 The CIE diagram of B255…………...……….………………………….119 Fig. 5.3-1 (a) The structure of device (b) The schematic diagram of energy band gap (V)…………………………………………………………………………..121 Fig. 5.3-2 (a) I-V curve (b) L-V curve (c) E-J curve (VIII)………..……………….124 Fig. 5.3.1-1 (a)TGA (b) DSC analysis of B255…………………...………………..126 Fig. 5.3.2-1 (a) I-V curve (b) L-V curve (c) E-J curve (IX)……………...………….129 Fig. 5.4-1 The structure and schematic energy band gap diagram of (a) electron dominant (b) hole dominant device…………………………………….131 Fig. 5.4-2 The I-V curve of electron dominant and hole dominant device……...…132 Fig. 5.4-3 (a)The structure of device (b) The diagram schematic of energy band gap (VI)…………………………………………………………….……………135 Fig. 5.4-4 (a) I-V curve (b) L-V curve (c) E-J curve (X)……………………...…….136 Table Caption Table 1.2-1 The comparison of OLEDs and PLEDs…………………………………...2 Table 3.2.1-1 The property of substrates……………………………………………..29 Table 3.3.2.2-1 The contact angle of flexible substrate……………………….……...43 Table 4.2-1 Settings of sample parameters (I)………………………………………...58 Table 4.2-2 The performance of all devices (I)………………………………………..62 Table 4.2.2-1 The wavelength and CIE coordinate (I)……………………………….65 Table 4.3-1 The performance of device (II)…………………………………………...69 Table 4.3.1-1 The contact angle of Ag, ITO and substrate surface………………….70 Table 4.3.1-2 The electric property and thermal stability of electrode……………..74 Table 4.3.2-1 The wavelength and CIE coordinate (II)………………………………76 Table 4.4-1 The performance of device (III)………………………………………….81 Table 4.4.1-1 The atomic ratios of Ag surface………………………………………...85 Table 4.4.1-2 The work function of Ag anode………………………………………...87 Table 4.4.1-3 The contact angle measurement of Ag anode………………………….87 Table 4.4.1-4 The roughness of PEDOT: PSS film…………………………………...89 Table 4.4.1-5 The reflective index of Ag anode at 560 nm…………………………...91 Table 4.5-1 The performance of device (IV)………………………………………….95 Table 4.5.1-1 The transmittance index of cathode at 560 nm………………………..97 Table 4.5.1-2 The electric property and thermal stability of electrode (II)…………97 Table 4.5.2-1 The performance of device (V)………………………………………..101 Table 4.5.3-1 The performance of device (VI)………………………………………106 Table 5.2-1 Settings of sample parameters (II)……………………………………...112 Table 5.2-2 The performance of all devices (VII)…………………………………...116 Table 5.2.2-1 The wavelength and CIE coordinate (II)……………………………..119 Table 5.3-1 The performance of device (VIII)………………………………………124 Table 5.2.3-1 The performance of device (IX)………………………………………129 Table 5.4-1 The performance of device (X)………………………………………….136

    Reference

    [1] Pope M., Kaltmann, H. P. and Magnante, P., J. “Electroluminescence in Organic Crystals” Chem Phy. Vol. 38, 2042 (1963).
    [2] W. Helfrich, and W. G. Schneider, “Recombination Radiation in Anthracene Crystals” Phys. Rev. Lett. Vol. 14, pp. 229-231(1965).
    [3] C. W. Tang. S.A. VanSlyke, “Organic electroluminescent diodes” Appl.
    Phys. Lett., Vol. 51, 913, (1987).
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackly,
    R.H.Friend, P. L. Burn, and A. B. Homes, “Light-emitting diodes based on conjugated polymers” Nature, Vol. 347, 539 (1990).
    [5] Forrest, S. R., P.E. Burrows, and M.E. Thompson, “Very high-efficiency
    green organic light-emitting devices based on electrophosphorescence”
    Appl. Phys. Lett. Vol. 75, 4 (1999).
    [6] V. Bulovic, G. Gu, P. E. Burrows, M. E. Thompson, and S. R. Forrest, ” Transparent light-emitting devices” Nature (London) Vol. 380,29. (1996)
    [7] http://homepage.ntu.edu.tw/~ntuipse/File/class%20lecture%20
    (chap%203)-20090324.ppt
    [8] A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and R. Salaneck,
    “Fluorine Tin Oxide as an Alternative to Indium Tin Oxide in Polymer
    LEDs“ Adv. Mater. Vol. 10, 859 (1998).
    [9] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and
    D.B.Chrisey, “Transparent conducting Zr-doped In2O3 thin films for
    organic light-emitting diodes “ Appl. Phys. Lett. Vol. 78, 1050 (2001).

    [10] A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, “Transparent organic light-emitting diodes using metal acethylacetonate complexes as an electron injective buffer layer” Appl. Phys. Lett. 5978, 3343 (2001).
    [11] I-Min Chan, Tsung-Yi Hsu, and Franklin C. Hong, “Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode” Appl. Phys. Lett, Vol. 81, 1899 (2002).
    [12] JJ Huang, YK Su, SH Wang, YH Liu, FS Juang,“Efficiency Enhancement of Top Emission Organic Light-Emitting Diodes with Ni/Au Periodic Anode” J. J. Appl Phys, Vol. 47, 9, 7359 (2008).
    [13] I. M. Chan, W. C. Cheng, and F. C. Hong, “Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces” Appl. Phys. Lett. Vol. 80, 13 (2002).
    [14] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, “Interference effects in bilayer organic light-emitting diodes” Appl. Phys. A: Mater. Sci. Process. Vol. A68, 447 (1999).
    [15] S. F. J. Appleyard and M. R. Willis, “Electroluminescence: enhanced
    injection using ITO electrodes coated with a self assembled monolayer”
    Opt. Mater. Vol. 9, 120 (1998).
    [16] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A.-M. Hor, and H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides” Appl. Phys. Lett. Vol. 78, 2595 (2001).
    [17] Ch. Jonda, A. B. R. Mayer, and W. Grothe, “Determination of the barrier
    heights for electron injection in organic light emitting devices” J. Appl.
    Phys. Vol. 85, 6884 (1999).

    [18] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, “Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes” Appl. Phys. Lett. Vol. 79, 174 (2001).
    [19] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode“ Appl. Phys. Lett. Vol. 70, 152 (1997).
    [20] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices” Appl. Phys. Lett. Vol. 73, 1185 (1998).
    [21] J. Kido and T. Matsumoto, “Bright organic electroluminescent devices
    having a metal-doped electron-injecting layer” Appl. Phys. Lett. Vol. 73,
    2866 (1998).
    [22] L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes” Appl. Phys. Lett. Vol. 78, 544 (2001).
    [23] L. S. Hung and M. G. Mason, “Voltage reduction in organic light-emitting diodes” Appl. Phys. Lett. Vol. 78, 3732 (2001).
    [24] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, “LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes” Appl. Phys. Lett. Vol. 77, 3096 (2000).

    [25] H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, and Y. Taga, “Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface” J. Lumin. Vol 87–89, pp. 1165-1167 (2000).
    [26] M. K. Fung, S. L. Lai, S. W. Tong, M. Y. Chan, C. S. Lee, S. T. Lee, W. W. Wu, M. Inbasekaran, and J. J. O’Brien, “Anode modification of polyfluorene-based polymer light-emitting devices” Appl. Phys. Lett. Vol. 81, 1497 (2002).
    [27] J. M. Bharathan and Y. Yang, “Polymer/metal interfaces and the performance of polymer light-emitting diodes” J. Appl. Phys. Vol. 84, 3207(1998).
    [28] M. Stossel, J. Staudigel, F. Steuber, J. Simmer, and A. Winnacke, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices” Appl. Phys. A: Mater. Sci. Process. Vol. 68, pp. 387-390 (1999).
    [29] S. C. Kim, S. N. Kwon, M. W. Choi, C. N. Whang, K. Jeong, S. H. Lee, J. G. Lee, and S. Kim, “Energy-level alignment at the tris-(8-hydroxyquinolate)-aluminum/Gd interface and Gd-electron-injection layer for organic electroluminescent device” Appl. Phys. Lett. Vol. 79, 3726 (2001).
    [30] M. Matsumura, A. Ito, and Y. Miyamae, “Accumulation of positive charges in organic light-emitting diodes with a double-layer structure” Appl. Phys. Lett. Vol. 75, 1042 (1999).
    [31] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode” Appl. Phys. Lett. Vol. 70, 152 (1997).
    [32] NL Dmitruk, AV Korovin, “Generalized analytical model for the calculation of light transmittance through a thin conducting film” Thin Solid Films Vol 484, Issue 1-2, 22, pp.382-388(2005).
    [33] Quantum Physics 3 edition by Stephen Gasiorowicz (2003).
    [34] A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Frienf, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement” Appl. Phys. Lett. Vol. 61, 2793 (1992).
    [35] H. Becker, et al. “Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers“ Phys Rev. Vol. B56, 1893 (1997).
    [36] S. Forrest, M. Thompson, MRS Spring Meeting, San Francisco, OIDA OLED Workshop, April 5(2002).
    [37] Baldo et al. “Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation” Phys. Rev. Vol. B62, 10967 (2000).
    [38] Young et al. “Nanoscale organic transistors based on self-assembled
    monolayers” Appl. Phys Lett. Vol. 80, 874 (2002).
    [39] Szmytkowski et al, “Photocurrent studies of an active polymer layer in a resonant microcavity” Appl. Phys. Lett., Vol. 80, 1465 (2002).
    [40] R. C. Kwong, M. R. Nugent, T. Ngo, K. Rajan, L. Michalski, M. S. Weaver, T. X. Zhou, Y-J. Tung, R. Hewitt, M. Hack, J. J. Brown, Ewing, NJ., Meeting of the Society for Information Display, Boston, May 20-24, 2002, presentation 52.3
    [41] G. Gu et al, “High-external-quantum-efficiency organic light-emitting devices” Opt. Lett. Vol. 22, Issue 6, 396 (1997).
    [42] C. Madigan et al, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification” Appl. Phys. Lett. Vol. 76, 1650 (2000).
    [43] I. Schnitzer and E. Yablonovich, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes” Appl. Phys. Lett., Vol. 63, 2174 (1993).
    [44] S. Johnson, Draft review Chapter submitted to OIDA, July 2000
    [45] Milan Stolka, Consultant, OIDA OLED Workshop August, 2002
    [46] Z. D. Popocic, H. Aziz, N. X. Hu, A. M. Hor, and Cu Xu, Synth.Met
    [47] E. P. Chen, and S. J. Chua, “Photoluminescence degradation in organic light-emitting devices” Appl. Phys. Lett. Vol.80, 697 (2002)
    [48] M. Fujihira, L.Do, A. Koike, and E. Han, “Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices “ Appl. Phys. Lett. Vol.68, 1787 (1996)
    [49] Hisashi ITO, Wataru OKA, Hideki GOTO and Hideo UMEDA, “Plastic substrates for flexible displays” Jpn. J. Appl. Phys. Vol. 45, Issue 5B, pp. 4325–4329(2006)
    [50] http://baike.baidu.com/view/1682239.htm
    [51] Qian, Lei; Bera, Debasis; Holloway, Paul H, “Effects of ultraviolet light irradiation on poly(vinlycarbazole)” Appl Phys Lett, Vol 92, Issue 5 (2008).

    [52] http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA489137&Location=
    U2&doc=GetTRDoc.pdf
    [53] http://en.wikipedia.org/wiki/Toluene
    [54] http://en.wikipedia.org/wiki/P-xylene
    [55] http://en.wikipedia.org/wiki/Dichlorobenzene
    [56] http://www.wcis.itri.org.tw/Upload/QUARTC/000045/36-8.pdf
    [57] http://140.116.161.120/index_machine.htm
    [58] http://www.uksaf.org/tech/xps.html
    [59] http://www.uksaf.org/tech/ups.html
    [60] http://en.wikipedia.org/wiki/Differential_scanning_calorimetry
    [61] Hsieh, Sung-Nien, Wen, Ten-Chin, Guo, Tzung-Fang, “Improved Performance of Top-Emissive Polymer Light-Emitting Device with Semitransparent Ag Cathode with the Aid of Au Nanoparticles” Jpn. J. Appl. Phys, Vol 46, 3A, pp. 932-936 (2007).
    [62] Won Choi, Ho; Young Kim, Soo; Kim, Ki-Beom; Tak, Yoon-Heung; Lee, Jong-Lam, “Enhancement of hole injection using O2 plasma-treated Ag anode for top-emitting organic light-emitting diodes” Appl. Phys. Lett, Vol 86, Issue 1, 012104. (2005)
    [63] Chieh-Wei Chen, Ping-Yuan Hsieh, Huo-Hsien Chiang, Chun-Liang Lin, Han-Ming Wu, and Chung-Chih Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode” Appl. Phys. Lett. Vol 83, Issue 5127(2003)
    [64] A. I. Boronin, S. V. Koscheev, and G. M. Zhidomirov, “XPS and UPS study of oxygen states on silver” J. Electron Spectrosc. Relat. Phenom. Vol 96, Issue 43 (1998).
    [65] J. F. Moulder, W. F. Strickle, P. E. Sobol, and K. D. Bomben,
    Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer,
    Eden Prairie, MN), (1992).
    [66] G. B. Hoflund and Z. F. Hazos, “Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy” Phys. Rev B62, 11126(2000).
    [67] M. L. Tu*, Y. K. Su, W. C. Lu, H. L. Yang, T. F. Kuo and T. C. Wen, “Effect of Post Annealing on Performance of Polymer Light-Emitting Devices” Jpn. J. Appl. Phys. Vol 44, pp. 7482–7484 (2005).

    下載圖示 校內:2011-06-26公開
    校外:2014-06-26公開
    QR CODE