| 研究生: |
羅乾豪 Lo, Chien-Hao |
|---|---|
| 論文名稱: |
細粒料含量對剪力波速影響之實驗研究 The Experimental Study of the Effects of Fines Content on Shear Wave Velocity |
| 指導教授: |
倪勝火
Ni, Sheng-Huo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 粉質砂土 、不排水剪力強度 、彎曲元件 、剪力波速 |
| 外文關鍵詞: | silty sand, undrained shear strength, bender element, shear wave velocity |
| 相關次數: | 點閱:173 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣在1999年發生集集大地震,芮氏規模7.3,當時在粉土質砂質發生大規模的液化現象,其中發現含細粒料(通過200號篩顆粒)砂土有獨特力學性質。本研究的目的為探討在不同細粒料下飽和之粉質砂土最大剪力模數(G_max)與不排水剪力強度(S_u)之相關性。研究方法為使用低塑性細粒料飽和員林砂,並控制不同細粒料含料(15 %、30 %、50 %)與不同孔隙比( e = 0.7、0.8、1.0 )在不同為壓下( 50 kPa、100 kPa、200 kPa )及加軸差應力時不同應變量(ε= 5 %、7 %、10 %、15 % )下,利用彎曲元件(bender element)求其剪力波速(V_s)。試驗結果顯示,在孔隙比為0.7時隨細粒料含量的增加剪力波速會下降,而孔隙比0.8、1.0時剪力波速隨細粒料含量增加先下降,在30%有最低點50%又升高的趨勢;在加軸差的過程中量測不同應變量之剪力波速,結果發現相同細粒料含量下,在量測之不同應變量下,孔隙比越大剪力波速越慢;最後嘗試探討最大剪力模數與不排水剪力強度之相關性。
Liquefaction phenomenon had happened in western Taiwan widely during Chi-Chi earthquake, 1999. It was found that the fines material
(the material pass through No.200 sieve) is an important influence factor in the liquefaction area.
The study focuses on the effects of fines content on undrained shear strength and maximum shear modulus. The material tested is low plastic Yian-Lin sand (YLS). The fines content considered are 15 %, 30 %, 50 %, while the void ratios considered are 0.7, 0.8, 1.0, in different confining pressure and different strain amplitude deviator stress increases. The bender element apparatus is used to measure the shear wave velocity in the above situation.
The results show that the shear velocity of the reconstituted specimen decreases with increasing the fines content (FC) when the void ratio is 0.7. And, the shear wave velocity will firstly decrease as FC at 30%, however, it will increase on FC at 50% for the void ratio equal to 0.8 and 1.0.The results also showed that the greater the void ratio, the slower shear wave velocity.
林保延,「利用彎曲元件試驗推估砂土動態性質之探討」,碩士
論文,國立臺灣科技大學營建工程技術研究所,2005年。
陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士
論文,國立成功大學土木工程研究所,2010年。
吳瑋特,「土壤動力學與大地工程」,地工技術雜誌,pp.5-19,
1985年。
林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,
國立交通大學土木工程學系,2003年。
黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,
國立交通大學土木工程學系,2007年。
6. 李瑋榮,「細粒料含量對飽和粉質砂土動態行為影響之研究」,
碩士論文,國立成功大學土木工程研究所,2010年。
7. 邱建銘,「以剪力波速評估員林地區液化及其他地層動態反應研
究」,碩士論文,國立台灣大學土木工程研究所,2001年。
8. 龔東慶、歐章煜,「土壤小應變三軸試驗之發展與應用」,地工技
術,第96期(民國92年6月)第5-16頁。
9. 陳昱憲,「頻率比對台北盆地含細料砂土動態性質與地盤反應分
析初步研究」,碩士論文,國立台灣大學土木工程研究所,1998
年。
10. 廖廷勛,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論
文,國立台灣科技大學營建工程學系,1998年。
11. 黃安斌,「台灣中西部粉質砂土壤液化型為之研究心得」,地工
技術雜誌121期,第5-16頁。
12. 黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻
抗」,碩士論文,國立台灣科技大學營建工程系,2003年。
13. 陳百騏,「三軸應力與單剪應力下台北盆地砂性土壤之剪力模數
與阻尼比」,碩士論文,國立台灣大學土木工程系, 1996年。
14. Atkinson, J.K., and Sallfors, G., “Experimental Determination of
Soil Properties,” Proceedings of the 10th ECSMFE, Florence 3, pp.
915-956 (1991).
15. Baig, S., Picornell, M., and Nazarian, S., “Low Strain Shear Moduli
of Cemented Sand,” Journal of Geotechnical and Geoenvironmental
Engineering, ASCE, Vol. 123, No. 6, pp. 540-545 (1997).
16. Dyvik, R., and Madshus, C., “Lab Measurements of G_max Using
Bender Elements,” Advances in the Art of Testing Soil Under
Cyclic Conditions, Conference, Detroit, MI, Geotechnical
Engineering Division, ASCE, New York, pp. 186-196 (1985)
17. Hardin, B.O., and Richart, F.E., Jr., “Elastic Wave Velocity in
Granular Soil,” Journal of Soil Mechanic and Foundation
Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56 (1963)
18. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping
in Soils: Measurement and Parameter Effects,” J. Soil Mech. Found.
Div. , ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
19. Iwasaki, T., and Tatsuoka, F., “Effect of Grain Size and Grading on
Dynamic Shear Modulus of Sand,” Soil and Foundations,
JSSMFE, Vol. 17, No. 3, pp. 19-35 (1977).
20. Iwasaki, T., Tasuoka, F., and Takagi, Y., “Shear Modulus of Sands
under Cyclic Torsional Shear Loading,” Soil and Foundations,
JSSMFE, Vol. 18, No. 1, pp. 39-56 (1978).
21. Jovicic, M., Coop, R., and Simic, M., “Object Criteria for
Determining G_max from Bender Element Tests,” Geotechnique
46, No. 2, pp. 357-362 (1996)
22. Lade, P.V., and Yamamuro, J.A., “Effect of Non-Plastic Fines on
Static Liquefaction of Sands,” Canadian Geotechnical Journal,
Vol. 34, No. 6, pp. 918-928 (1997).
23. Naeini, S.A., and Baziar, M.H., “Effect of Fines Content on
Steady-State Strength of Mixed and Layered Samples of a Sand,”
Soil Dynamics and Earthquake Engineering Vol. 24, Issue 3,
pp. 181-187, (2004)
24. Polito, C.P., and Martin, J.R., “Effects of Nonplastic Fines on the
Liquefaction Resistance of Sands,” Journal of Geotechnical and
Geoenvironmental Engineering, pp. 408-415, May (2001).
25. Robertson, P.K., Woeller, D.J., and Finn, W.D.L., “Seismic Cone
Penetration Test for Evaluating Liquefaction Potential under Cyclic
Loading,” Canadian Geotechnical Journal, Vol. 29, pp. 686-695.
(1992).
26. Salgado, R., Bandini, P., and Karim, A., “Shear Strength and
Stiffness of Silty Sand,” Journal of Geotechnical and
Geoenvironmental Engineering, (2000).
27. Seed, H.B., and Idriss, I.M., “Soil Moduli and Damping
Factors for Dynamic Response Analyses,” Report No. EERC
70-10, Earthquake Engineering Research Center, University
of California, (1970).
28. Shirley D.J., and Hampton, L.D., “Shear-Wave Measurements in
Laboratory Sedimenta,” Journal of Acoust. Soc Am.63, No. 2, Feb.,
pp. 607-613 (1978).
29. Thevanayagam, S., and Martin, G.R., “Liquefaction in Silty
Soil-Screening and Remediation Issues,” Soil Dynamics and
Earthquake Engineering, Vol. 22, pp. 1035-1042 (2002).
30. Viggiani, G., and Atkinson, J.H., “Interpretation of Bender
Element Tests,” Geotechnique 45, No. 1, pp. 149-154 (1995).
31. Wang, Y.H., Lo, K.F., Yan, W.M., and Dong, X.B.
“Measurement Biases in the Bender Element Test,” Journal of Geotechnical and Geoenvironmental Engineering 133(5): 564-574.