| 研究生: |
何鎧亘 He, Kai-Hsuan |
|---|---|
| 論文名稱: |
合成功能性單體2-胺基-3-硝基-5-乙烯基吡啶以製備模版高分子膜用於肌酸酐交流阻抗式之感測 Synthesis of the functional monomer 2-amino-3-nitro-5-vinylpyridine to fabricate the imprinted polymeric film for the AC impedance detection of creatinine |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 肌酸酐 、分子模版高分子 、電阻抗式分析 |
| 外文關鍵詞: | creatinine, molecular imprinted polymer (MIP), AC impedance |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌酸酐 (Creatinine) 是肌肉中肌酸的代謝物,為診斷人體腎功能的指標性物質,因此人體血液及尿液中的肌酸酐含量,是相當重要的生理檢測項目。本研究乃是合成功能性單體以製備肌酸酐模版高分子膜披覆電極,以電阻抗式分析感測肌酸酐。
功能性單體之製備是以 2-amino-5-bromo-3-nitropyridine (ABNP) 為反應物,以乙烯基取代溴,合成功能性單體 2-amino-3-nitro-5-vinylpyridine (ANVP),以 1H-NMR 進行分子結構之鑑定,確認單體的合成無誤。
接著以肌酸酐為模版分子,以 ANVP 為功能性單體,以 EGDMA (ethylene glycol dimethacrylate) 為交聯劑,在 AIBN (2,2′-azobisisobutyronitrile) 起始劑的作用下,於金電極表面進行聚合,如是製備之分子模版高分子膜,在有效萃洗出模印的肌酸酐分子後,該高分子膜即可留下具有肌酸酐專一性結合之基座。由 SEM 微影觀察高分子膜之表面結構,由 FT-IR 分析高分子膜萃洗前後特徵鍵之差異,即可確認是否有肌酸酐模印分子被移除。
此模版高分子膜電極將以交流阻抗式進行肌酸酐濃度之感測,以探討阻抗式感測肌酸酐濃度的可行性,並可得知此膜電極的模印表現。由實驗結果得知,當預聚合溶液體積為 7.0 μL,模版分子:功能性單體:交聯劑之莫耳比為 1: 3: 24 時,膜電極有較佳的模印表現,其感測靈敏度為 0.74 ± 0.03 ((Ω – Ωo)/ Ωo)/ (mg/dL),模印指數為 2.94 ± 0.18。
分子模版高分子膜電極在肌酸共存時對肌酸酐的辨識效果,亦將於本研究中進行討論,由實驗得知,MIP 膜電極對肌酸酐之選擇率為 6.42 ± 0.62。在血清中對肌酸酐的感測效果亦將進行探討,由實驗得知,在血清的干擾下,MIP 膜電極所得之靈敏度為 0.11 ± 0.01 ((Ω – Ωo)/ Ωo)/ (mg/dL)。
綜合前述,確認以模版材料批覆之電極,搭配電阻抗方式的訊號分析,對於肌酸酐之臨床檢測有其可行性。
Creatinine, the metabolite in muscle from creatine, is an important marker for the diagnosis of kidney function. Therefore, human blood and urine creatinine levels are the very important physiological test items. In this study, the functional monomer, 2-amino-3-nitro-5-vinylpyridine (ANVP) was synthesized to assist the production of the creatinine-imprinted polymer film creatinine sensing by AC impedance. ANVP as the monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, and 2, 2′-azobisisobutyronitrile (AIBN) as the initiator, were mixed together in the presence of creatinine as the template for the molecular imprinted polymeric film polymerization on the surface of Au electrode. After the template extracted, the MIP film have the ability to recognize the creatinine by its specific cavity. The most appropriate synthesized ratio is 1:3:24, and the volume of pre-polymerization solution is 7.0 μL. The sensitivity of MIP film electrode is 0.74 ± 0.03 ((Ω – Ωo)/ Ωo)/ (mg/dL), and the imprinting factor is 2.94 ± 0.18. The recognizable of MIP film electrode in the coexistence of creatinine and creatine solution would be confirmed in this study. The selectivity of MIP film electrode toward creatinine is 6.42 ± 0.62. Whether it has the function toward creatinine sensing in the serum based environment was also confirmed.
1. B.R. Eggins, Chemical Sensors and Biosensors, John Wiley & Sons, 2002.
2. Tuan Vo-Dinh, Brian Cullum, Biosensors and biochips: advances in biological and medical diagnostics, Fresenius' Journal of Analytical Chemistry, 2000, 366, 540−551.
3. W.J. Cheong, S.H. Yang, F. Ali, Molecularly imprinted polymers for separation science: a review of reviews, Journal of Separation Science, 2013, 36, 609−628.
4. M.H. Lee, J.L. Thomas, M.H. Ho, C. Yuan, H.Y. Lin, Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine, Applied Materials and Interfaces, 2010, 2, 1729−1736.
5. F.J. Sainz-Gonzalo, J.F. Fernandez-Sanchez, A. Fernandez-Gutierrez, The development of a screening molecularly imprinted polymer optosensor for detecting xylenes in water samples, Microchemical Journal, 2010, 99, 278−282.
6. H. Kubo, N. Yoshioka, T. Takeuchi, Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer, Organic Letters, 2004, 7, 359−362.
7. D. Singabraya, L. Bultel, F. Sineriz, M. Mothere, D. Lesur, J. Kovensky, D. Papy-Garcia, Molecular imprinting technology for specific recognition of heparan sulfate like disaccharides, Talanta, 2012, 99, 833−839.
8. K.H. Row, H.Y. Yan, Characteristic and synthetic approach of molecularly imprinted polymer, International Journal of Molecular Sciences, 2006, 7, 155−178.
9. G. Wulff, A. Sarhan, K. Zabrocki, Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Letters, 1973, 14, 4329−4332.
10. G. Wulff, W. Vesper, R. Grobe-Einsler, A. Sarhan, Enzyme-analogue built polymers, on the synthesis of polymers containing chiral cavities and their use for the resolution of racemates, Makromolekulare Chemie, 1977, 178, 2799−2816.
11. J.P. Fan, L. Li, Z.Y. Tian, C.F. Xie, Y. Xue, Y.L. Xie, R. Xu, Y. Qin , X.H. Zhang, J.H. Zhu, Synthesis and evaluation of uniformly sized synephrine-imprinted microparticles prepared by precipitation polymeri- zation, Separation Science and Technology, 2014, 49, 258−266.
12. J. Jiang, Q. Zhou, C.C. Kang, S. Wu, Y. Tang, X. Zuo, Preparation and characterization of a pseudo-template imprinted polymer with a chirality-matching monomer for the separation of cinchona alkaloids by high-performance liquid chromatography, Journal of Applied Polymer Science, 2013, 129, 3425−3432.
13. J. Haginaka, H. Tabo, H. Matsunaga, Preparation of molecularly imprinted polymers for organophosphates and their application to the recognition of organophosphorus compounds and phosphopeptides, Analytica Chimica Acta, 2012, 748, 1−8.
14. J.P. Schillemans, C.F. van Nostrum, Molecularly imprinted polymer particles: synthetic receptors for future medicine, Future Medicine, 2006, 1, 437−447.
15. H. Shaikh, N. Memon, H. Khan, M.I. Bhanger, S.M. Nizamani, Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl)phthalate: application to sample clean-up prior to gas chromatographic determination, Journal of Chromatography A, 2012, 1247, 125−133.
16. A.G. Mayesan, K. Mosbach, Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase, Analytical Chemistry, 1996, 3769−3774.
17. S. Pardeshi, R. Dhodapkar, A. Kumar, Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis, Food Chemistry, 2014, 146, 385−393.
18. 顧相伶, 沉澱聚合製備單分散高分子微球及其自組裝,中國山東大學高分子化學與物理系博士學位論文,2010。
19. B. Gao, F. An, Y. Zhu, Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles, Polymer, 2007, 48, 2288−2297.
20. R. Say, A. Gultekin, A.A. Ozcan, A. Denizli, A. Ersoz, Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2'-deoxy guanosine determination, Analytica Chimica Acta, 2009, 640, 82−86.
21. P.T. Vallano, V.T. Remcho, Highly selective separations by capillary electrochroma- tography: molecular imprint polymer sorbents, Journal of Chromatography A, 2000, 887, 125−135.
22. D. Yin, M. Ulbricht, Antibody-imprinted membrane adsorber via two-step surface grafting, Biomacromolecules, 2013, 14, 4489−4496.
23. O.Y. Henry, D.C. Cullen, S.A. Piletsky, Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review, Analytical and Bioanalytical Chemistry, 2005, 382, 947−956.
24. F. Lanza, B. Sellergren, Method for synthesis and screening of large groups of molecularly imprinted polymers, Analytical Chemistry, 1999, 71, 2092−2096.
25. D.J. Duffy, K. Das, S.L. Hsu, J. Penelle, V.M. Rotello, H.D. Stidham, Binding effiviency and transport properties of molecularly imprinted polymer thin films, Journal of the American Chemical Society, 2002, 124, 8290−8296.
26. K. Fukazawa, Q. Li, S. Seeger, K. Ishihara, Direct observation of selective protein capturing on molecular imprinting substrates, Biosensors and Bioelectronics, 2013, 40, 96−101.
27. D.L. Rathbone, A. Bains, Tools for fluorescent molecularly imprinted polymers, Biosensors and Bioelectronics, 2005, 20, 1438−1442.
28. S. Banerjee, B. Konig, Molecular imprinting of luminescent vesicles, Journal of the American Chemical Society, 2013, 135, 2967−2970.
29. H. Kim, Y. Kim, J.Y. Chang, Preparation of a molecularly imprinted polymer containing Europium(III) ions for luminescent sensing, Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50, 4990−4994.
30. R.C. Stringer, S. Gangopadhyay, S.A. Grant, Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer, Analytical Chemistry, 2010, 82, 4015−4019.
31. O. Gurtova, L. Ye, F. Chmilenko, Potentiometric propranolol-selective sensor based on molecularly imprinted polymer, Analytical and Bioanalytical Chemistry, 2013, 405, 287−295.
32. F.T.C. Moreira, R.A.F. Dutra, J.P.C. Noronha, M.G.F. Sales, Electrochemical biosensor based on biomimetic material for myoglobin detection, Electrochimica Acta, 2013, 107, 481−487.
33. D.C. Apodaca, R.B. Pernites, R. Ponnapati, F.R. Del Mundo, R.C. Advincula, Electropolymerized molecularly imprinted polymer film: EIS sensing of bisphenol A, Macromolecules, 2011, 44, 6669−6682.
34. K.K. Reddy, K.V. Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis, Sensors and Actuators B: Chemical, 2013, 183, 356−363.
35. S. Narayanan, H.D. Appleton, Creatinine: a review, Clinical Chemistry, 1980, 26, 1119−1126,.
36. M.J. Syu, T.J. Hsu, Z.K. Lin, Synthesis of recognition matrix from 4-methylamino- N-allylnaphthalimide with fluorescent effect for the imprinting of creatinine, Analytical Chemistry, 2010, 82, 8821−8829.
37. T.J. Li, P.Y. Chen, P.C. Nien, C.Y. Lin, R. Vittal, T.R. Ling, K.C. Ho, Preparation of a novel molecularly imprinted polymer by the sol-gel process for sensing creatinine, Analytica Chimica Acta, 2012, 711, 83−90.
38. 陳苓怡等,臨床評估腎臟功能方法之優缺點,高雄醫學大學附設中和紀念醫院, 2012。
39. 吳明儒,評估腎臟功能的方法,腎臟與病析,台灣腎臟醫學會,19 卷 2 期,2007。
40. L. Tymecki, J. Korszun, K. Strzelak, R. Koncki, Multicommutated flow analysis system for determination of creatinine in physiological fluids by Jaffé method, Analytica Chimica Acta, 2013, 787, 118−125.
41. E. Mohabbati-Kalejahi, V. Azimirad, M. Bahrami, A. Ganbari, A review on creatinine measurement techniques, Talanta, 2012, 97, 1−8.
42. T. Tsuchida, K. Yoda, Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum, Clinical Chemistry, 1983, 29, 51−55.
43. R.Y. Hsieh, H.A. Tsai, M.J. Syu, Designing a molecularly imprinted polymer as an arrtifical receptor for the spectific recognition of creatinine in serums, Biomaterials, 2006, 27, 2083−2089.
44. I.O. K'Owino, O.A. Sadik, Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring, Electroanalysis, 2005, 17, 2101−2113.
45. 許庭榕,以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐,國立成功大學化工系碩士學位論文,2010。
46. Christopher M.A. Brett, Maria Oliveira Brett, Electrochemistry - principles, methods, and applications, Oxford University Press, 1993.
47. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, John Wiley & Sons, 2nd Ed., 2001.
48. E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 2013, 5, 1098−1115.
49. L.G. Wade, Organic Chemistry, Pearson, 7th Ed., 2010.
50. T.L. Delaney, D. Zimin, M. Rahm, D. Weiss, O.S. Wolfbeis, V.M. Mirsky, Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization. Analytical Chemistry, 2007, 79, 3220−3225.
51. J.L. Gong, F.C. Gong, Y. Kuang, G.M Zeng. G.L. Shen, R.Q. Yu, Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer, Analytical and Bioanalytical Chemistry, 2004, 379, 302−307.
校內:2024-12-31公開