簡易檢索 / 詳目顯示

研究生: 陳怡穎
Chen, Yi-Ying
論文名稱: 可兩階段經皮釋放抗原之幾丁聚醣/聚麩胺酸微針貼片於經皮免疫之應用
Two-stage transdermal release of antigens from chitosan/gamma-polyglutamic acid microneedle patches for transcutaneous immunization
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 幾丁聚醣佐劑鑲嵌式微針緩慢釋放經皮免疫
外文關鍵詞: Chitosan, embeddable microneedles, sustained delivery, biocompatibility
相關次數: 點閱:99下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室於去年時開發出第一代可鑲嵌式的幾丁聚醣(chitosan, CS)微針貼片,證明在相同劑量的抗原(500 μg OVA)下,CS微針可引起較肌肉注射更高且更持久的免疫反應,但因接種劑量較高,導致在接種初期各組的抗體差異不明顯,而本年度的目標為研發一款同時結合快速及緩慢釋放特性的微針貼片,此款微針利用聚麩胺酸(gamma-polyglutamic acid, γ-PGA)的快速水溶特性及幾丁聚醣的緩慢降解性質製成,將低劑量的抗原(100 μg OVA)以1:3的比例包覆於γ-PGA及CS中,達到類似於傳統疫苗接種上的Prime-Boost兩階段免疫接種效果,並希望能在接種初期即快速提高體內抗體的濃度,達到快速產生免疫保護力的效果。後端支撐軸的部分改用生物相容性好且水溶性更佳的聚麩胺酸來製備,取代第一代的高分子聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)和聚乙烯醇(polyvinyl alcohol, PVA)所製備的支撐軸,由體外豬皮及體內大鼠穿刺測試證實,此微針貼片具有足夠之機械強度可刺破角質層,讓微針針體部分鑲嵌於富含抗原呈現細胞之表皮層及真皮層中(深度約800~900 μm),並且穿刺後所產生之些微紅腫及傷口都可在三天內完全癒合。而將微針包覆螢光抗原後刺入老鼠背部皮膚,並利用非侵入式活體分子影像系統(In vivo imaging spectrum, IVIS)及共軛焦顯微成像技術,證實聚麩胺酸部分的抗原可在7天內被完全釋放,而幾丁聚醣微針部分能在體內緩慢降解並持續釋放抗原長達至少28天。在大鼠免疫試驗結果證實,結合快速釋放與緩慢釋放抗原的CS/γ-PGA微針可在接種2週後引起明顯較高的專一性抗體反應,且持續至少12週。證實結合快速及緩釋的CS/γ-PGA微針,能比第一代的CS微針更快速刺激抗體的產生,且明顯降低抗原的使用量,只需一半的抗原就能刺激出更強烈的免疫反應,這種具有Prime-Boost免疫接種策略的微針,有機會取代傳統多次針劑接種模式,成為新一代的免疫接種方式。

    Currently, polymeric microneedles (MNs) are composed of water-soluble polymers and rapidly release encapsulated vaccines. However, these dissolving MNs can not be capable to offer an antigen-depot effect for better vaccination. They usually require repeated administration to induce a protective immunity. In this study, we develop a two-layered MN system, composed of chitosan (CS) MNs and poly--glutamic acid (-PGA) supporting, to provide a two-stage vaccine release strategy. When inserted into the skin, highly hydrophilic -PGA supporting can be quickly dissolved in skin interstitial fluid to release encapsulated payload to “prime” the immune system. The biodegradable CS MN can be embedded in the skin for extended delivery of antigens to spur an immune response. Skin insertion results showed MNs were inserted and then embedded between epidermis and dermis, which are rich in antigen-presenting cells. The MN-created microchannels recovered completely within 3 days. When the OVA-loaded MNs were applied to the rat skin in vivo, confocal microscopic and IVIS images showed that OVA can be rapidly released from the γ-PGA supporting and then gradually released from the CS MNs in a sustained manner. Compared to the first generation CS MNs and the traditional intramuscular immunization, the CS/-PGA MNs induced a significantly higher OVA specific antibody response from the second week to the twelfth weeks. The proposed MN system with two-stage release behavior achieves a prime-boost vaccination from a single administration. We expect that the two-layered -PGA/chitosan MN technology may serve as an alternative to repeated immunizations and become an effective single-dose formulation for vaccine.

    摘要……………………………………………………………………………………I Abstract………………………………………………………………………………II 誌謝…………………………………………………………………………………III 目錄…………………………………………………………………………………IV 圖目錄……………………………………………………………………………VII 表目錄……………………………………………………………………………IX 第一章 緒論…………………………………………………………………………1 1.1 免疫系統機制…………………………………………………………1 1.1.1 傳統疫苗接種途徑……………………………………………1 1.1.2 經皮疫苗接種…………………………………………………3 1.2 結合快速釋放及緩釋的疫苗系統……………………………………7 1.2.1 傳統疫苗接種限制……………………………………………7 1.2.2 免疫佐劑的影響……………………………………………10 1.2.3 免疫反應路徑………………………………………………11 1.3 材料……………………………………………………………………14 1.3.1 幾丁聚醣……………………………………………………14 1.3.2 聚麩胺酸……………………………………………………16 1.3.3 海藻糖………………………………………………………17 1.3.4 卵白蛋白……………………………………………………18 1.4 研究目的………………………………………………………………19 第二章 實驗材料與方法…………………………………………………………25 2.1 實驗藥品、耗材及動物……………………………………………………25 2.2 儀器設備…………………………………………………………………29 2.3 兩階段式釋放可鑲嵌式微針貼片及穿刺………………………………30 2.3.1 兩階段式釋放微針………………………………………………30 2.3.2 微針穿刺能力試驗…………………………………………36 2.4 包覆抗原之兩階段式釋放微針貼片……………………………………38 2.4.1 包覆Alexa Fluor 594-OVA及Alexa Fluor 647-OVA之兩段式 微針貼片製作………………………………………………38 2.4.2 包覆FITC-OVA及Alexa Fluor 647-OVA之兩段式微針貼片 製作…………………………………………………………39 2.4.3 體外兩段式微針放藥測試…………………………………40 2.4.4 體內兩段式微針降解測試…………………………………41 2.4.5 體內抗原釋放測試…………………………………………42 2.4.6 大鼠免疫試驗………………………………………………43 第三章 結果與討論………………………………………………………………48 3.1 兩段式釋放之微針貼片………………………………………………48 3.1.1 兩段式釋放之幾丁聚醣/聚麩胺酸微針貼片………………48 3.1.2 微針穿刺能力分析…………………………………………49 3.2 包覆抗原之兩段式微針貼片…………………………………………51 3.2.1 包覆FITC-OVA及Alexa Fluor 647-OVA之兩段式釋放微 針……………………………………………………………51 3.2.2 包覆Alexa Fluor 594-OVA及Alexa Fluor 647-OVA之兩段式 釋放微針……………………………………………………52 3.2.3 體外抗原釋放測試…………………………………………53 3.2.4 兩段式釋放微針貼片降解測試……………………………58 3.2.5 兩段式釋放微針貼片於體內抗原釋放測試………………68 3.2.6 抗原包覆定量及大鼠免疫測試……………………………69 第四章 結論…………………………………………………………………………76 參考文獻……………………………………………………………………………78 補充資料……………………………………………………………………………86 圖目錄 圖1-1 (a)肌肉注射示意圖 (b)皮內/皮下/肌肉注射方式示意圖……………………2 圖1-2 (a)人體皮膚構造 (b)人體表皮層構造………………………………………3 圖1-3 微針類型示意圖………………………………………………………………4 圖1-4 表面塗佈微針…………………………………………………………………5 圖1-5 高分子微針圖…………………………………………………………………6 圖1-6 次級免疫反應圖………………………………………………………………7 圖1-7 免疫反應路徑圖……………………………………………………………12 圖1-8 Th1/Th2免疫反應平衡圖……………………………………………………13 圖1-9 幾丁聚醣結構式……………………………………………………………15 圖1-10 聚麩胺酸結構式……………………………………………………………17 圖1-11 海藻糖結構式………………………………………………………………18 圖1-12 卵白蛋白結構式……………………………………………………………19 圖1-13 第二代可鑲嵌式幾丁聚醣微針示意圖……………………………………21 圖1-14 第三代可鑲嵌式幾丁聚醣結合聚麩胺酸微針示意圖……………………22 圖1-15 兩段式可鑲嵌式幾丁聚醣結合聚麩胺酸微針免疫概念圖………………23 圖1-16 實驗架構……………………………………………………………………24 圖2-1 金屬模具: (a)1.5倍光學影像; (b)4.5倍光學影像…………………………30 圖2-2 PLA模具: (a)900 μm 1.5倍光學影像; (b)900 μm 4.5倍光學影像; (c)600 μm 1.5倍光學影像; (d)600 μm 4.5倍光學影像……………………………………33 圖2-3 兩段式釋放微針製備過程示意圖…………………………………………35 圖2-4 體外實驗兩段式釋放微針貼片穿刺示意圖………………………………37 圖2-5 活體大鼠穿刺流程示意圖…………………………………………………38 圖2-6 Franz cell 裝置示意圖………………………………………………………41 圖2-7 非侵入式活體影像系統(IVIS)分析圖………………………………………42 圖2-8 採血時間點及免疫試驗流程圖……………………………………………45 圖2-9 酵素結合免疫吸附法分析血清中抗體濃度流程圖………………………47 圖3-1 兩段式釋放之幾丁聚醣/聚麩胺酸微針貼片: (a) 1.5倍光學影像 (b) 4.5倍光學影像……………………………………………………………………………49 圖3-2 兩段式釋放微針貼片豬皮穿刺結果: (a)體外豬皮穿刺 (b)冷凍組織切片可見光圖 (c)冷凍組織切片螢光圖…………………………………………………50 圖3-3 兩段式釋放微針貼片大鼠穿刺結果: (a)微針穿刺前圖 (b)穿刺後支撐軸溶解圖 (c)大鼠皮膚穿刺後圖………………………………………………………51 圖3-4 體外用接枝FITC的OVA: (a)透析前 (b)透析後; 包覆FITC-OVA及Alexa647-OVA 的兩段式釋放微針: (c)1.5倍光學影像 (d)4.5倍光學影像……52 圖3-5 體內用接枝的Alexa 594-OVA及Alexa 647-OVA兩段式釋放微針: (a)1.5倍光學影像 (b)4.5倍光學影像 (c)FITC-CS螢光影像 (d) Alexa594-OVA螢光影像 (e) Merge 螢光影像……………………………………………………………53 圖3-6 FITC-OVA於純水中檢量線…………………………………………………54 圖3-7 Alexa647-OVA於純水中檢量線……………………………………………55 圖3-8 FITC-OVA於PBS中檢量線…………………………………………………57 圖3-9 (a)體外用兩段式釋放微針穿刺豬皮圖 (b)Franz cell中抗原釋放曲線……57 圖3-10 多光子共軛焦顯微影像系統分析包覆Alexa594-OVA及Alexa647-OVA兩段式釋放微針穿刺大鼠背部後第0天影像,不同Z軸深度之X-Y平面螢光影像及3D影像…………………………………………………………………………60 圖3-11 多光子共軛焦顯微影像系統分析包覆Alexa594-OVA及Alexa647-OVA兩段式釋放微針穿刺大鼠背部後第3天影像,不同Z軸深度之X-Y平面螢光影像及3D影像……………………………………………………………………………61 圖3-12 多光子共軛焦顯微影像系統分析包覆Alexa 594-OVA及Alexa 647-OVA兩段式釋放微針穿刺大鼠背部後第7天影像,不同Z軸深度之X-Y平面螢光影 像及3D影像…………………………………………………………………………62 圖3-13 多光子共軛焦顯微影像系統分析包覆Alexa 594-OVA及Alexa 647-OVA兩段式釋放微針穿刺大鼠背部後第14天影像,不同Z軸深度之X-Y平面螢光影像及3D影像…………………………………………………………………………63 圖3-14 多光子共軛焦顯微影像系統分析包覆Alexa 594-OVA及Alexa 647-OVA兩段式釋放微針穿刺大鼠背部後第21天影像,不同Z軸深度之X-Y平面螢光影像及3D影像…………………………………………………………………………64 圖3-15 多光子共軛焦顯微影像系統分析包覆Alexa 594-OVA及Alexa 647-OVA兩段式釋放微針穿刺大鼠背部後第28天影像,不同Z軸深度之X-Y平面螢光影像及3D影像…………………………………………………………………………65 圖3-16 兩段式釋放微針穿刺於SD大鼠背部,穿刺部位組織冷凍切片圖……66 圖3-17 非侵入式活體影像(IVIS)分析兩段式釋放微針於活體內釋放抗原情形:螢光強度定量分析 (b)穿刺部位於不同時間點的螢光活體影像………………69 圖3-18 BCA kit檢量線……………………………………………………………70 圖3-19 大鼠血清IgG吸光值對時間圖……………………………………………72 圖3-20 大鼠血清IgG 1吸光值對時間圖…………………………………………73 圖3-21 大鼠血清IgG 2a吸光值對時間圖…………………………………………74 圖3-22 大鼠血清IgG 1/IgG 2a比值對時間圖……………………………………75 表目錄 表3-1 體外用兩段式釋放微針包覆抗原量………………………………………55 表3-2 兩段式釋放微針及純幾丁聚醣微針包覆抗原定量結果…………………70

    [1]Pegoraro C, MacNeil S, Battaglia G. Transdermal drug delivery:from micro to nano. Nanoscale. 2012;4:1881-1894.
    [2]Cevc G, Vierl U. Spatial distribution of cutaneous microvasculature and local drug clearance after drug application on the skin. Journal of Controlled Release. 2007;118:18-26.
    [3]MacNeil S. Biomaterials for tissue engineering of skin. Materials Today. 2008;11:26-35.
    [4]J Liposome Res. Elastic Vesicles as a tool for dermal and transdermal delivery. Journal of Liposome Research. 2006;16:273-80.
    [5]Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics. 2008;364:227-36.
    [6]Balmayor ER, Azevedo HS, Reis RL. Controlled delivery system: from pharmaceutics to cells and genes. Pharmaceutics Research. 2011;28:1241-58.
    [7]Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews. 2012;64:1547-68.
    [8]Demuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Advanced Materials. 2010;22:4851-6.
    [9]Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. Journal of Controlled Release. 2010;142:187-95.
    [10]Yunzhe M, Wenqian T, Shelly JK, William FS, Nancy LH, Harvinder SG. Vaccine Delivery to the Oral Cavity Using Coated Microneedles Induces Systemic and Mucosal Immunity. Pharmaceutical Research. 2014;31:2393-2403.
    [11]Choi HJ, Song JM, Bondy BJ, Compans RW, Kang SM, Prausnitz MR. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles. Plos One. 2015;10; e0134431.
    [12]Fernando GJ, Chen X, Primiero CA, Yukiko SR, Fairmaid EJ, Corbett HJ, et al. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody response. Journal of Controlled Release. 2012;159:215-21.
    [13]Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharmaceutical Research. 2006;23:1008-19.
    [14]Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharmaceutical Research. 2008;25:104-13.
    [15]Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113-24.
    [16]Hiraishi Y, Nakagawa T, Quan YS. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. International Journal of Pharmaceutics. 2013;441:570-579.
    [17]Matsuo K, Yokota Y, Zhai Y, Quan YS, Kamiyama F, Mukai Y, et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. Journal of Controlled Release. 2012;161:10-7.
    [18]Guo L, Chen J, Qiu Y. Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. International Journal of Pharmaceutics. 2013;447:22-30.
    [19]Heffernan MJ, Zaharoff DA, Fallon JK. In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials. 2011;32:926-932.
    [20]Jesus S, Soares E, Costa J, Borchard G, Borges O. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-epsilon-caprolactone based nanoparticles. International Journal of Pharmaceutics. 2016;504;59-69.
    [21]Hori M, Onishi H, Machida Y. Evaluation of Eudragit-coated chitosan microparticles as an oral immune delivery system. International Journal of Pharmaceutics. 2005;297:223-234.
    [22]Takahiro N, Yoshiyuki H, Kozo T, Yoshie M. Novel Chitosan Particles and Chitosan-Coated Emulsions Inducing Immune Response via Intranasal Vaccine Delivery. Pharmaceutical Research. 2004;21:671-674.
    [23]Gong Y, Tao L, Wang F, Liu W, Jing L, Liu D, Hu S, Xie Y, Zhou N. Chitosan as an adjuvant for a Helicobacter pylori therapeutic vaccine. Molecular Medicine Reports. 2015;12;4123-4132.
    [24]Wen ZS, Xu YL, Zou XT, Xu ZR. Chitosan Nanoparticles Act as an Adjuvant to Promote both Th1 and Th2 Immune Responses Induced by Ovalbumin in Mice. Marine Drugs. 2011;9:1038-1055.
    [25]Fan L, Yang H, Yang J, Peng M, Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate Polymers. 2016;146;427-434.
    [26]Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery oflevofloxacin. Carbohydrate Polymers. 2016;143;90-99.
    [27]Levi-Polyachenko N, Jacob R, Day C, Kuthirummal N. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of smallmolecules. Colloids Surf B Biointerfaces. 2016;142;315-324.
    [28]Dragostin OM, Samal SK, Dash M, Lupascu F, Pânzariu A, Tuchilus C, Ghetu N, Danciu M, et al. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydrate Polymers. 2016;141;28-40.
    [29]Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S. Chitosan functionalized polyvinyl alcohol for prospects biomedical and industrial
    applications: A review. International Journal of Biological Macromolecules. 2016;87;141-154.
    [30]Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate Polymers. 2016;144;419-427.
    [31]Mantripragada VP, Jayasuriya AC. Bone regeneration using injectable BMP-7 loaded chitosan microparticles in rat femoral defect. Materials Science & Engineering C Materials for Biological Applications. 2016;63;596-608.
    [32]Vishwanath V, Pramanik K, Biswas A. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Journal of Biomaterials Science-Polymer edition. 2016;27;657-674.
    [33]Siddhapura K, Harde H, Jain S. Immunostimulatory effect of tetanus toxoid loaded chitosan nanoparticles following microneedles assisted immunization. Nanomedicine-Nanotechnology Biology and medicine. 2016;12;213-222.
    [34]Zhang P, Xu Y, Zhu X, Huang Y. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. International Journal of Pharmaceutics. 2015;496;993-1005.
    [35]Hellmers F, Ferguson P, Koropatnick J. Characterization and in vitro cytotoxicity of doxorubicin-loaded gamma-polyglutamic acid-chitosan composite nanoparticles. Biochemical Engineering Journal. 2013;75;72-78.
    [36]Manocha B, Margaritis A. Controlled Release of Doxorubicin from Doxorubicin/gamma-Polyglutamic Acid Ionic Complex. Journal of Nanomaterials. 2010;780171.
    [37]Manocha B, Margaritis A. Production and characterization of gamma polyglutamic acid nanoparticles for controlled anticancer drug release. Critical Reviews in Biotechnology. 2008;28;83-99.
    [38]Wang S, Cao X, Shen M, Guo R, Bányai I, Shi X. Fabrication and morphology control of electrospun poly(gamma-glutamic acid) nanofibers for biomedical applications. Colloids and Surfaces B Biointerfaces. 2012;89;254-264.
    [39]Mbanefo EC, Kumagai T, Kodama Y, et al. Immunogenicity and anti-fecundity effect of nanoparticle coated glutathione S-transferase (SjGST) DNA vaccine against murine Schistosoma japonicum infection. Parasitology International. 2015;4:24-31.
    [40]Cherif MS, Shuaibu MN, Kodama Y, et al. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model. Vaccine. 2014;17:1998-2006.
    [41]Liao ZX, Peng SF, Ho YC, Mi FL, Barnali M, Sung HW. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly (gamma-glutamic acid). Biomaterials. 2012;11:3306-3315.
    [42]Higashiyama T. Novel functions and applications of trehalose. Pure and Applied Chemistry. 2002;74:1263-9.
    [43]Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology. 1995;62:3592-7.
    [44]Leslie SB, Teter SA, CroweLM, Crowe JH. Trehalose lowers membrane phase transitions in dry yeast cells. Biochimica at biophysica acta(BBA)-Biomembranes. 1994;1192:7-13.
    [45]Bieganski RM, Fowler A, Morgan JR, Toner M. Stabilization of active recombinant retroviruses in an amorphous dry state with trehalose. Biotechnol Prog. 1998;14:615-20.
    [46]Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharmaceutical research. 2011;28:135-44.
    [47]Song JM, Kim YC, Lipatov AS, et al. Microneedle Delivery of H5N1 Influenza Virus-Like Particles to the Skin Induces Long-Lasting B- and T-Cell Responses in Mice. Clin Vaccine Immunol. 2010;17:1381-9.
    [48]Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989;28:3916-22.
    [49]Chua BY, Sekiya T, Al Kobaisi, Mohammad, et al. A single dose biodegradable vaccine depot that induces persistently high levels of antibody over a year. Biomaterials. 2015;53:50-57.
    [50]Mancini F, Monaci E, Lofano G, et al. One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7 Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4(+) T Cells, and IL-17A. Plos One. 2016;11:
    [51]Jeong J, Park C, Choi K, et al. A new single-dose bivalent vaccine of porcine circovirus type 2 and Mycoplasma hyopneumoniae elicits protective immunity and improves growth performance under field conditions. Veterinary Microbiology. 2016;182:178-186.
    [52]McHugh KJ, Guarecuco R, Langer R, et al. Single-injection vaccines: Progress, challenges, and opportunities. Journal of Controlled Release. 2015;219:596-609.

    下載圖示 校內:2022-08-10公開
    校外:2022-08-10公開
    QR CODE