| 研究生: |
詹竣宇 Jan, Jiun-Yun |
|---|---|
| 論文名稱: |
混合物實驗設計法應用於混摻高分子與小分子作為高效率高分子發光二極體的電子注入層 Blending Polymer and Small Molecule as An Electron Injection Layer in Highly Efficient Polymer Light Emitting Diodes via Mixture Design |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 高分子發光二極體 、混合物實驗設計法 、電子注入層 |
| 外文關鍵詞: | polymer light-emitting diode, electron injection, mixture design |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文混合了三種不同電子注入材料,並使用溶液製程方式成膜出三成份電子注入層,搭配高功函數金屬鋁做為陰極,製作出高效率高分子發光二極體。
第二章將使用一種高分子PVP加兩種小分子TOAB、2PAD混合後做為電子注入層,並利用混合物實驗設計法加以分析迴歸以利探討。由回歸出來之三角等高線圖可得到在何種混合比例下有最高的電流密度、亮度與發光效率。藉由分析三角等高線圖可推論出三種材料混合後各自扮演著什麼角色,並利用AFM與XRD等數據加以分析。
第三章將使用兩種高分子PEIE、PVP加一種小分子TOAB混合後做為電子注入層,並利用混合物實驗設計法加以分析迴歸以利探討。由回歸出來之三角等高線圖可得到在何種混合比例下有最高的電流密度、亮度與發光效率。藉由分析三角等高線圖可推論出三種材料混合後各自扮演著什麼角色,並利用AFM等數據加以分析。
Highly efficient polymer light-emitting diodes (PLEDs) are demonstrated by using a three-component EIL composed of poly(vinylpyrrolidone) (PVP), Tetraoctylammonium bromide (TOAB), and 2-phenylacetamide (2PAD), optimized by mixture design. Also, highly efficient polymer light-emitting diodes (PLEDs) are demonstrated by using a three-component EIL composed of Polyethylenimine, 80% ethoxylated (PEIE), Tetraoctylammonium bromide (TOAB), and poly(vinylpyrrolidone) (PVP), optimized by mixture design. Due to remarkable electron injection, the devices with PVP+TOAB+2PAD/Al cathodes show the high luminance efficiency 13.4 cd A-1, and PEIE+TOAB+PVP/Al cathodes show the high luminance efficiency 13.5 cd A-1, respectively. It paves the way for developing interfacial materials to achieve high-performance organic/polymer optoelectronics.
1. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51: p. 913-915.
2. J. H. Burroughes, et al., Light-emitting-diodes based on conjugated polymers. Nature, 1990. 347: p. 539-541.
3. Friend, R.H., et al., Electroluminescence in conjugated polymers. Nature, 1999. 397: p. 121-128.
4. M. Reufer, et al., Spin-Conserving Carrier Recombination in Conjugated Polymers. Nature Materials, 2005. 4: p. 340-346.
5. M. Wohlgenannt, et al., Formation Cross-Sections of Singlet and Triplet Excitons in π-Conjugated Polymers. Nature, 2001. 409: p. 494-497.
6. Xu, Y., et al., Solvent effects on the architecture and performance of polymer white-light-emitting diodes with conjugated oligoelectrolyte electron-transport layers. Advanced Materials, 2009. 21: p. 584-588.
7. S. K. So, et al., Surface Preparation and Characterization of Indium Tin Oxide Substrates for Organic Electroluminescent Devices. Applied Physics a-Materials Science & Processing, 1999. 68: p. 447-450.
8. Wu, C.C., et al., Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Applied Physics Letters, 1997. 70: p. 1348.
9. Brown, T.M., et al., Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters, 1999. 75: p. 1679.
10. Y. Cao, et al., Polymer Light-Emitting Diodes with Polyethylene Dioxythiophene–Polystyrene Sulfonate as the Transparent Anode. Synthetic Metals, 1997. 87: p. 171-174.
11. Liu, G., et al., An ionic molecular glass as electron injection layer for efficient polymer light-emitting diode. Macromol Rapid Commun, 2009. 30: p. 1484-91.
12. Niu, Y.-H., et al., High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode. Applied Physics Letters, 2005. 86: p. 083504.
13. Xu, Q., et al., Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification. Applied Physics Letters, 2003. 83: p. 4695.
14. Heil, H., et al., Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. Journal of Applied Physics, 2001. 89: p. 420.
15. Jabbour, G.E., et al., Highly Efficient and Bright Organic Electroluminescent Devices with An Aluminum Cathode. Applied Physics Letters, 1997. 71: p. 1762-1764.
16. Shaheen, S.E., et al., Bright Blue Organic Light-Emitting Diode with Improved Color Purity Using A LiF/Al Cathode. Journal of Applied Physics, 1998. 84: p. 2324-2327.
17. Mori, T., et al., Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Applied Physics Letters, 1998. 73: p. 2763.
18. Huang, J., Z. Xu, and Y. Yang, Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Advanced Functional Materials, 2007. 17: p. 1966-1973.
19. Li, Y., et al., Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. Applied Physics Letters, 2007. 90: p. 012119.
20. Wu, C.-I., et al., Electronic structures and electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for organic light-emitting devices. Applied Physics Letters, 2006. 88: p. 152104.
21. Lee, T.-H., et al., Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes. Advanced Functional Materials, 2008. 18: p. 3036-3042.
22. Siemund, H., F. Bröcker, and H. Göbel, Enhancing the electron injection in polymer light-emitting diodes using a sodium stearate/aluminum bilayer cathode. Organic Electronics, 2013. 14: p. 335-343.
23. Arias, A.C., et al., Materials and Applications for Large Area Electronics: Solution-Based Approaches. Chemical Reviews, 2010. 110: p. 3-24.
24. Huang, F., et al., A Conjugated, Neutral Surfactant as Electron-Injection Material for High-Efficiency Polymer Light-Emitting Diodes. Advanced Materials, 2007. 19: p. 2010-2014.
25. Huang, F., et al., Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene. Chemistry of Materials, 2004. 16: p. 708-716.
26. Wu, H.B., Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Advanced Materials, 2004. 16: p. 1826.
27. Huang, F., H. Wu, and Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010. 39: p. 2500-21.
28. Duan, C., et al., Conjugated zwitterionic polyelectrolytes and their neutral precursor as electron injection layer for high-performance polymer light-emitting diodes. Advanced Materials, 2011. 23: p. 1665-9.
29. Fang, J., et al., Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes. Journal of the American Chemical Society, 2011. 133: p. 683-5.
30. Yang, R., et al., Conjugated Oligoelectrolyte Electron Transport/Injection Layers for Organic Optoelectronic Devices. Journal of the American Chemical Society, 2008. 130: p. 3282-3283.
31. Ma, W., et al., Water/Methanol-Soluble Conjugated Copolymer as An Electron-Transport Layer in Polymer Light-Emitting Diodes. Advanced Materials, 2005. 17: p. 274-277.
32. Hoven, C., et al., Ion Motion in Conjugated Polyelectrolyte Electron Transporting Layers. Journal of the American Chemical Society, 2007. 129: p. 10976-10977.
33. Hoven, C.V., et al., Electron injection into organic semiconductor devices from high work function cathodes. Proceedings of the National Academy of Sciences USA, 2008. 105: p. 12730-5.
34. Yang, R., et al., Control of Interchain Contacts, Solid-State Fluorescence Quantum Yield, and Charge Transport of Cationic Conjugated Polyelectrolytes by Choice of Anion. Journal of the American Chemical Society, 2006. 128: p. 16532-16536.
35. Yang, R., et al., Control of Cationic Conjugated Polymer Performance in Light Emitting Diodes by Choice of Counterion. Journal of the American Chemical Society, 2006. 128: p. 14422-14423.
36. Huang, F., et al., Synthesis and properties of a novel water-soluble anionic polyfluorenes for highly sensitive biosensors. Polymer, 2005. 46: p. 12010-12015.
37. Jin, Y., et al., Improved electron injection in polymer light-emitting diodes using anionic conjugated polyelectrolyte. Applied Physics Letters, 2008. 93: p. 123304.
38. Guo, T.-F., et al., High-performance polymer light-emitting diodes utilizing modified Al cathode. Applied Physics Letters, 2005. 87: p. 013504.
39. Wetzelaer, G.A.H., et al., Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes. Applied Physics Letters, 2013. 102: p. 053301.
40. Yamamoto, T., H. Kajii, and Y. Ohmori, Improved electron injection from silver electrode for all solution-processed polymer light-emitting diodes with Cs2CO3:conjugated polyelectrolyte blended interfacial layer. Organic Electronics, 2014. 15: p. 1077-1082.
41. Wang, H., et al., Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly. ACS Applied Materials & Interface, 2013. 5: p. 26-34.
42. Hsieh, S.-N., et al., Self-assembled tetraoctylammonium bromide as an electron-injection layer for cathode-independent high-efficiency polymer light-emitting diodes. Journal of Materials Chemistry, 2011. 21: p. 8715.
43. Wu, C.-H., et al., Significance of ions with an ordered arrangement for enhancing the electron injection/extraction in polymer optoelectronic devices. Journal of Materials Chemistry. C, 2014. 2: p. 4805-4811.
44. Cornell, J.A. , et al.,Experiments with Mixtures : Designs, Models, and the Analysis of Mixture Data,1990, 2nd ed. , John Wiley & Sons, Inc. , New York
45. Khuri, A. , et al. , I.Response Surfaces: Designs and Analyses,1987, Chap. 9, 333-374, Marcel Dekker, Inc. ,N. Y.
46. H. Scheffe,Experiments with Mixtures, Journal of the Royal Statistical Society Series B-Statistical Methodology,1958. 20: p. 344-360
47. N. R. Draper and H. Smith,Applied Regression Analysis,1981, 294-379, John Wiley & Sons, Inc. , New York
48. Li, Y.J., C.C. Chang, and T.C. Wen, A Mixture Design Approach to Thermally Prepared Ir-Pt-Au Ternary Electrodes for Oxygen Reduction in Alkaline Solution. Journal of Applied Electrochemistry, 1997. 27: p. 227-234.
49. Lin, S.M. and T.C. Wen, A Mixture Design Approach to the Service Life and the Oxygen-Evolving Catalytic Activity of Ru-Sn-Ti Ternary Oxide Coated Electrodes. Journal of Applied Electrochemistry, 1993. 23: p. 487-494.
50. Lin, S.M. and T.C. Wen, Oxygen Evolution on Ir-Ru-Sn Ternary Oxide-Coated Electrodes in H2SO4 Solution - An Approach Employing Statistical Experimental Strategy. Journal of the Electrochemical Society, 1993. 140: p. 2265-2271.
51. Yang, C.H., Y.J. Li, and T.C. Wen, Mixture Design Approach to PEG-PPG- PTMG Ternary Polyol-Based Waterborne Polyurethanes. Industrial & Engineering Chemistry Research, 1997. 36: p. 1614-1621.
52. Yang, C.H., H.J. Yang, and T.C. Wen, Mixture Design Approaches to IPDI-H6XDI-XDI Ternary Diisocyanate-Based Waterborne Polyurethanes. Polymer, 1999. 40: p. 871-885.
53. Kim, Y.-H., et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes. Advanced Functional Materials, 2014. 24: p. 3808-3814.
54. Kippelen, B., et al., A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012. 336: p. 327-332.
55. Stolz, S., et al., Investigation of solution-processed ultrathin electron injection layers for organic light-emitting diodes. ACS Applied Materials & Interface, 2014. 6: p. 6616-22.