簡易檢索 / 詳目顯示

研究生: 周韋民
Chou, Wei-Min
論文名稱: 通電對銅鋅合金電性及機械性質與微結構影響之研究
Effects of current stressing on microstructure and properties of Cu36Zn alloy
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 104
中文關鍵詞: 銅鋅合金電遷移活化能晶界效應應變場效應
外文關鍵詞: Cu36Zn alloy, Electromigration, Recrystallization, Grain boundary effect, Strain field effect
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為藉由觀察微結構及機械性質探討銅鋅合金通電後造成性質變化的機制,將銅鋅合金薄帶施加10000-16000 A/cm2之電流密度通電2h-5cycles後,利用液態氮急速冷卻試片以觀察通電處理後之微結構。實驗結果顯示隨電流密度的增加,試片之片電阻及微硬度增加比例持續上升,並藉由阿瑞尼斯方程式計算微硬度變化的活化能,顯示活化能可分為低電流密度(10000-13000 A/cm2)之23.9 kJ/mol以及高電流密度(13000-16000 A/cm2)之3.6 kJ/mol。電子背向散射繞射分析(EBSD)在低電流密度區段的試片中觀察到細小晶粒佔比增加、雙晶比例增加等再結晶行為所伴隨之現象,並透過HRTEM在通電試片中觀察到差排的生成。推測電子風力使原子移動而產生差排,新生成的差排作為成核點,伴隨電流生成的焦耳熱效應促進材料發生非完整再結晶行為,因此晶界效應(Grain boundary effet)在本研究中會影響性質表現,但由於平均晶粒尺寸變化並不明顯,仍以應變場效應(Strain field effect)作為低電流密度區段性質變化之主要機制;透過HRTEM在高電流密度的試片中觀察到差排密度急遽上升至1017 m-2以上,推測高電流密度引起之電子風力嚴重破壞晶格結構,以應變場效應作為高電流密度區段性質變化之主要機制。

    This study discussed the mechanism of properties change on Cu36Zn alloy after current stressing through the investigation of microstructure and mechanical properties. The strip specimens were subjected to 10000~16000 A/cm2 D.C. for 2h-5cycles and then were rapidly quenched with liquid nitrogen after current stressing to freeze the microstructure for investigation. The results show that the extent of variation of sheet resistance and micro-hardness kept increasing with the increase of current density. The activation energies of micro-hardness change, calculated via Arrhenius equation, were 23.9kJ/mol for low current density (10000~13000 A/cm2) and 3.6kJ/mol for high current density (13000~16000 A/cm2). EBSD analysis indicated that the recrystallization was accompanied by an increase of small grain fraction and twin fraction when the specimen was stressed under low current density. The uncompleted recrystallization behavior is likely ascribed to generation of dislocation induced by electron wind force. The newly formed dislocations act as the nucleation sites for recrystallization. The current-induced Joule heat facilitates the recrystallization behavior. Grain boundary effect will affect the properties, but the change of grain size is not obvious. So strain field effect is still the main mechanism of properties change under low current density. HRTEM analysis indicated that more dislocations were produced in the specimen at high current density, the dislocation density increased abruptly up to 1017 m-2. The properties change under hugh current density is ascribed to strain field effect.

    中文摘要 I Extend Abstract II 致謝 XIV 總目錄 XV 圖目錄 XVIII 表目錄 XXIV 第壹章 簡介 1 1-1電遷移 1 1-1-1電遷移理論 1 1-1-2焦耳熱效應 6 1-1-3電遷移對材料晶格之影響 8 1-2純銅與銅合金通電之研究 14 1-2-1電流對微結構之影響 14 1-2-2電流對機械性質之影響 20 1-3電流與再結晶行為 24 1-3-1 退火理論 24 1-3-2 再結晶分類 29 1-3-3 電流與再結晶 33 1-4研究目的 41 第貳章 實驗方法與步驟 42 2-1實驗構想 42 2-2 Cu36Zn合金試片 42 2-3 通電實驗 44 2-4 電性分析 44 2-5 微硬度分析 45 2-6 微結構觀察 45 2-6-1 電子背向散射繞射分析 45 2-6-2 高解析場發射掃描穿透式電子顯微鏡分析 46 第參章 實驗結果與討論 50 3-1 通電前之材料觀察 50 3-1-1 晶粒取向與晶粒尺寸 50 3-1-2 晶格排列與差排 56 3-2 通電對電性與機械性質之影響 59 3-2-1 電流對片電阻之影響 59 3-2-2 電流對微硬度之影響 61 3-3 通電前後晶粒取向與晶粒尺寸變化 64 3-3-1 晶粒取向之變化 66 3-3-2 晶粒尺寸之變化 74 3-4 通電前後晶格排列與差排密度變化 80 3-5 活化能與性質變化機制 89 3-5-1 計算活化能 89 3-5-2 性質變化之機制探討 93 第肆章 結論 97 參考文獻 98 附錄 102 附錄一 晶界效應與應變場效應貢獻比例之計算 102

    [1] J. R. Black, "Electromigration—A brief survey and some recent results," IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, 1969.
    [2] H. Ceric and S. Selberherr, "Electromigration in submicron interconnect features of integrated circuits," Materials Science and Engineering: R: Reports, vol. 71, no. 5-6, pp. 53-86, 2011.
    [3] K. J. Puttlitz and K. A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies. CRC Press, 2004.
    [4] P. S. Ho and T. Kwok, "Electromigration in metals," Reports on Progress in Physics, vol. 52, no. 3, p. 301, 1989.
    [5] R. Brouwer and R. Griessen, "Electromigration of hydrogen in alloys: Evidence of unscreened proton behavior," Physical Review Letters, vol. 62, no. 15, p. 1760, 1989.
    [6] K. Compaan and Y. Haven, "Correlation factors for diffusion in solids," Transactions of the Faraday Society, vol. 52, pp. 786-801, 1956.
    [7] P. Shewmon, Diffusion in Solids. Springer, p. 229, 2016.
    [8] J. P. Joule, The Scientific Papers of James Prescott Joule. Cambridge University Press, 2011.
    [9] T. Alford, E. Misra, S. Bhagat, and J. Mayer, "Influence of Joule heating during electromigration evaluation of silver lines," Thin Solid Films, vol. 517, no. 5, pp. 1833-1836, 2009.
    [10] J.-W. Park, H.-J. Jeong, S.-W. Jin, M.-J. Kim, K.-Y. Lee, J.-J. Kim, S.-T. Hong,and H.-N. Han, "Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy," Materials Characterization, vol. 133, pp. 70-76, 2017.
    [11] A. S. Budiman, W. D. Nix, N. Tamura, B.C. Valek, K.gadre, J. Maiz, R. Spolenak, and J. R. Patel, "Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction," Applied Physics Letters, vol. 88, no. 23, p. 233515, 2006.
    [12] J.-Y. He, K.-L. Lin, and A. T. Wu, "The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing," Journal of Alloys and Compounds, vol. 619, pp. 372-377, 2015.
    [13] Y.-H. Oh, S.-I. Kim, M. Kim, S.-Y. Lee, and Y.-W. Kim, "Preferred diffusion paths for copper electromigration by in situ transmission electron microscopy," Ultramicroscopy, vol. 181, pp. 160-164, 2017.
    [14] H.-C. Huang, K.-L. Lin, and A. T. Wu, "Disruption of crystalline structure of Sn3. 5Ag induced by electric current," Journal of Applied Physics, vol. 119, no. 11, p. 115102, 2016.
    [15] C.-L. Liang, S.-W. Lee, and K.-L. Lin, "The mechanism of an increase in electrical resistance in Al thin film induced by current stressing," Thin Solid Films, vol. 636, pp. 164-170, 2017.
    [16] C. Liao, K. Chen, W. Wu, and L. Chen, "In situ transmission electron microscope observations of electromigration in copper lines at room temperature," Applied Physics Letters, vol. 87, no. 14, p. 141903, 2005.
    [17] C. Liu, J. Cohen, J. Adams, and A. Voter, "EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt," Surface Science, vol. 253, no. 1-3, pp. 334-344, 1991.
    [18] A. Magnaterra, "Structure factor and resistivity of copper and silver," Physics Letters A, vol. 44, no. 1, pp. 63-64, 1973.
    [19] T. Konkova, I. Valeev, S. Mironov, A.Korznikov, G. Korznikova, M.M. Myshlyaev, and S.L. Semiatin , "Microstructure response of cryogenically-rolled Cu–30Zn brass to electric-current pulsing," Journal of Alloys and Compounds, vol. 659, pp. 184-192, 2016.
    [20] R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles. Cengage Learning, p. 106, 231-234, 2008.
    [21] A. Kauffmann, J. Freudenberger, H. Klauß, W. Schillinger, V. S. Sarma, and L. Schultz, "Efficiency of the refinement by deformation twinning in wire drawn single phase copper alloys," Materials Science and Engineering: A, vol. 624, pp. 71-78, 2015.
    [22] 梁品筑, "銅鋅合金電致再結晶之晶粒細化行為研究," 材料科學及工程學系, 成功大學, 2016年.
    [23] Y. Zhou, S. Xiao, and J. Guo, "Recrystallized microstructure in cold worked brass produced by electropulsing treatment," Materials Letters, vol. 58, no. 12-13, pp. 1948-1951, 2004.
    [24] H. Conrad, N. Karam, S. Mannan, and A. Sprecher, "Effect of electric current pulses on the recrystallization kinetics of copper," Scripta Metallurgica, vol. 22, no. 2, pp. 235-238, 1988.
    [25] T. Huang, L. Shuai, A. Wakeel, G. Wu, N. Hansen, and X. Huang, "Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3% Cu," Acta Materialia, vol. 156, pp. 369-378, 2018.
    [26] 楊榮顯, 工程材料學. 全華科技圖書, p. 100, 1977.
    [27] H. Miura*, T. Sakai, S. Andiarwanto, and J. Jonas, "Nucleation of dynamic recrystallization at triple junctions in polycrystalline copper," Philosophical Magazine, vol. 85, no. 23, pp. 2653-2669, 2005.
    [28] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena. Elsevier, p. 431, 2012.
    [29] K. Okazaki, M. Kagawa, and H. Conrad, "A study of the electroplastic effect in metals," Scripta Metallurgica, vol. 12, no. 11, pp. 1063-1068, 1978.
    [30] K. Okazaki, M. Kagawa, and H. Conrad, "Additional results on the electroplastic effect in metals," Scripta Metallurgica, vol. 13, no. 4, pp. 277-280, 1979.
    [31] H. Conrad, N. Karam, and S. Mannan, "Effect of electric current pulses on the recrystallization of copper," Scripta Metallurgica, vol. 17, no. 3, pp. 411-416, 1983.
    [32] H. Conrad, N. Karam, and S. Mannan, "Effect of prior cold work on the influence of electric current pulses on the recrystallization of copper," Scripta Metallurgica, vol. 18, no. 3, pp. 275-280, 1984.
    [33] A. Sprecher, S. Mannan, and H. Conrad, "Overview no. 49: On the mechanisms for the electroplastic effect in metals," Acta Metallurgica, vol. 34, no. 7, pp. 1145-1162, 1986.
    [34] Z. S. Xu and Y. X. Chen, "Effect of electric current on the recrystallization behavior of cold worked α-Ti," Scripta Metallurgica, vol. 22, no. 2, pp. 187-190, 1988.
    [35] K. Huang, C. Cayron, and R. E. Logé, "The surprising influence of continuous alternating electric current on recrystallization behaviour of a cold-rolled Aluminium alloy," Materials Characterization, vol. 129, pp. 121-126, 2017.
    [36] Y.-H. Liao, C.-L. Liang, K.-L. Lin, and A. T. Wu, "High dislocation density of tin induced by electric current," AIP Advances, vol. 5, no. 12, p. 127210, 2015.
    [37] 严文, 陈建, and 范新会, "Effects of grain boundaries on electrical property of copper wires," 中国有色金属学会会刊: 英文版, vol. 13, no. 5, pp. 1075-1079, 2003.
    [38] T. Ishida, K. Kakushima, T. Mizoguchi, and H. Fujita, "Role of dislocation movement in the electrical conductance of nanocontacts," Scientific Reports, vol. 2, p. 623, 2012.
    [39] L. Lu, R. Schwaiger, Z. Shan, M. Dao, K. Lu, and S. Suresh, "Nano-sized twins induce high rate sensitivity of flow stress in pure copper," Acta Materialia, vol. 53, no. 7, pp. 2169-2179, 2005.
    [40] S. Mahajan, C. Pande, M. Imam, and B. Rath, "Formation of annealing twins in fcc crystals," Acta Materialia, vol. 45, no. 6, pp. 2633-2638, 1997.
    [41] X.-M. Chen, Y. Lin, and F. Wu, "EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy," Journal of Alloys and Compounds, vol. 724, pp. 198-207, 2017.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE