| 研究生: |
黃譯賢 Huang, Yi-Hsien |
|---|---|
| 論文名稱: |
應用因子設計在生醫級鈦合金上表面改質與細胞增殖反應之研究 Factorial Design for Surface Modifications and Proliferation Assay on Medical Titanium Alloys |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鈦合金 、表面改質 、細胞增殖 、因子設計 |
| 外文關鍵詞: | titanium alloys, surface modifications, proliferation assay, factorial design |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一般的生醫材料中,鈦合金是廣泛受歡迎的基材之一,而表面改質方法種類繁多,例如機械研磨法、陽極處理法、化學處理法、生物分子黏附法等。其中,實驗中各種影響因子對表面改質後的結果或植入細胞後的生物特性,有不同程度的影響。因此,本研究運用因子設計分析之實驗方法,主要目的分別為探討經表面研磨處理後,藉由紫外光照射鈦合金表面親疏水性之變化;以及藉由電化學之陽極氧化處理建構氧化鈦奈米管柱與測試人類胎兒骨母細胞增殖之反應模式。
本研究提出二個有關紫外光照射鈦合金表面親疏水性之變化與藉由電化學之陽極氧化處理建構氧化鈦奈米管柱與測試人類胎兒骨母細胞增殖之反應模式的結論:(一)、紫外光照射鈦合金表面親疏水性有顯著動態變化;(二)、氧化鈦奈米管柱孔徑大小會影響人類胎兒骨母細胞之增殖反應。
In general, titanium is widely popular one substrate of biomedical materials. There is a wide variety of surface modification methods on titanium alloy, including Grinding, Anodization, Chemical Treatment, Biomolecular Adhesion etc. The functions of surface modification are changed to improve the functionality of the original materials by these methods, thus increasing the biological characteristics of implanted cells. Drawing on factorial design of experiments, the main purposes of this study are including as bellow: (1) the wettability variation on surface of biomedical Ti6Al4V by UV irradiation after grinding. (2) the proliferation model of human fetal osteoblast (hFOB) cells was determined by methylthiazoletetrazolium assay (MTT assay) on TiO2 nanotube arrays.
There are two study reslts as follows. First, the wettabillty on the surface of biomedical Ti6Al4V has significant implications and dynamic changes by UV irradiation. Second, the pore sizes of titanium dioxide nano-column can affect the hFOB cell proliferation.
[1] Bruni S, Martinesi M, Stio M, Treves C, Bacci T, Borgioli F. Effects of surface treatment of Ti-6Al-4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomaterialia 2005; 1: 223-234.
[2] Ku CH, Pioletti DP, Browneb M, Gregson PJ. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Biomaterials 2002; 23: 1447-1454.
[3] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003; 24(13): 2161-2175.
[4] Yan WQ, Takashi N. Keiichi K, Shigeru N, Masanori O, Tadashi K. Apatite layer-coated titanium for use as bone bonding implants. Biomaterials 1997; 18(17): 1185-1190.
[5] Sennerby L, Thomsem P, Ericson LE. Ultrastructure of the bone-titanium interface in rabbits. Journal of Materials Science: Materials in Medicine 1992; 3(4): 262-271.
[6] Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. Journal of Cellular Biochemistry 1994; 56(3): 340-347.
[7] Lawrence L, Hao L, Chew HR. On the correlation between Nd YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surface & Coatings Technology 2006; 200: 5581-5589.
[8] 詹育豪,利用電漿處理對鈦植體二氧化鈦層之顯微結構與特性研究,龍華科技大學 機械工程系 碩士論文,2006。
[9] 陳俊廷,熱機處理對Ti-7.5Mo合金機械性質的影響,國立成功大學 材料科學及工程學系 碩士論文,2009。
[10] 莊政和,鈦鉬合金熱處理後機械性質之研究,國立成功大學 材料科學及工程學系 碩士論文,2004。
[11] Mori M, Yamanaka K, Matsumotob H, Chibab A. Evolution of cold-rolled microstructures of biomedical Co-Cr-Mo alloys with and without N doping. Materials Science and Engineering: A 2010; 528(2): 614-621.
[12] 洪炳南,生物材料在醫學上的應用,科學月刊,1983; 167。
[13] Donachie Jr, Matthew J. Titanium - A Technical Guide, 2nd Edition. ASM International 2000.
[14] ASTM F136-98. Standard Specification for Wrought Titanium - 6Aluminum - 4Vanadium ELI (Extra Low Interstitial) Alloy (UNS R56401) for Surgical Implants Applications. ASTM International Voluntary Consensus Standards.
[15] Tan MJ, Chen GW, Thiruvarudchelvan S. High temperature deformation in Ti–5Al–2.5Sn alloy. Journal of Materials Processing Technology 2007; 192-193: 434-438.
[16] Thair L, Mudali UK, Rajagopalan S, Asokamani R, Raj B. Surface characterization of passive film formed on nitrogen ion implanted Ti–6Al–4V and Ti–6Al–7Nb alloys using SIMS. Corrosion Science 2003; 45(9): 1951-1967.
[17] Spriano S, Bosetti M, Bronzoni M, Vernè E, Maina G, Bergo V, Cannas M. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials 2005; 26(11): 1219-1229.
[18] Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomaterialia 2009; 5(9): 3625-3639.
[19] Niemeyer TC, Grandini CR, Pinto LMC, Angelo ACD, Schneider SG. Corrosion behavior of Ti–13Nb–13Zr alloy used as a biomaterial. Journal of Alloys and Compounds 2009; 476(1-2): 172–175.
[20] ASTM D4020-11. Standard Specification for Ultra High Molecular Weight Polyethylene Molding and Extrusion Materials.
[21] 陳俊雄,以電化學沉積法於鈦基板表面被覆磷酸鈣之研究,國立成功大學 材料科學及工程研究所 碩士論文,1996。
[22] Narasaraju TSB, Phebe DE. Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science 1996; 31(1): 1-21.
[23] Martin RI, Brown PW. Formation of hydroxyapatite in serum. Journal of Materials Science: Materials in Medicine 1994; 5(2): 96-102.
[24] Boulton LM, Gregson PJ, Tuke M, Baldwin T. Adhesively bonded hydroxyapatite coating. Materials Letters 1991; 12(1-2): 1-6.
[25] 李澤民,電漿熔射生醫玻璃塗層與氫氧基磷灰石塗層特性研究,國立成功大學 材料科學研究所 碩士論文,1993。
[26] Rondelli G, Vicentini B. Localized corrosion behaviour in simulated human body fluids of commercial Ni–Ti orthodontic wires. Biomaterials 1999; 20(8): 785-792.
[27] Ducheyne P, Healy KE. Surface Spectroscopy of Calcium Phosphate Ceramic and Titanium Implant Materials. Surface Characterization of Biomaterials. BD Ratner (Ed.), Elsevier, Amsterdam, 1988; 175-192.
[28] Askeland DR, Fulay PP, Wright WJ. The Science and Engineering of Materials, 6th Edition, 2011.
[29] 羅宗男,電漿熔射PSZ介層對牙科瓷與純鈦介面強度之效應研究,國立成功大學 材料科學及工程研究所 博士論文,2005。
[30] Park JB. Biomaterials Science and Engineering. Plenum Press, New York and London, 1985.
[31] Griss P, Heimke G. Five years experience with ceramic-metal- composite hip endoprostheses. Archives of Orthopaedic and Trauma Surgery 1981; 98: 157-164.
[32] Li J. Behaviour of titanium and titania-based ceramics in vitro and in vivo. Biomaterials 1993; 14(3):229-232.
[33] Jinno T, Kirk SK, Morita S, Goldberg VM. Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. The Journal of Arthroplasty 2004; 19(1): 102-109.
[34] Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxide on osteoblast responses. Biomaterials 2004; 25(18): 4087-4103.
[35] Liu X, Chub PK, Dinga C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering 2004; Vol. 47(3-4): 49-121.
[36] Kim HJ, Kim SH, Kim MS, Lee EJ, Oh HG, Oh WM, Park SW, Kim WJ, Lee GJ, Choi NG, Koh JT, Dinh DB, Hardin RR, Johnson K, Sylvia VL, Schmitz JP, Dean DD. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. Journal of Biomedical Materials Research Part A 2005; 74(3): 366-373.
[37] Manova D, Hirsch D, Mändl S, Neumann H. Microstructure of Ti thin films formed by energetic physical vapour deposition processes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2009; 267(8-9): 1680-168.
[38] Niu C, Magsamen G, Stephenson B, Radja J .Using hybrid ionized physical vapor deposition to control interface reaction during titanium deposition onto aluminum under-layer. Thin Solid Films 2009; 517(13): 3677-3680.
[39] LeClair P, Berera GP, Moodera JS. Titanium nitride thin films obtained by a modified physical vapor deposition process. Thin Solid Films 2000; 376(1-2): 9-15.
[40] Kim KH, Kwon TY, Kim SY, Kang IK, Kim S, Yang Y, Ong JL. Preparation and characterization of anodized titanium surfaces and their effect on osteoblast responses. Journal of Oral Implantology 2006; 32(1): 8-13.
[41] Butail G, Ganesan PG, Raddiar M, Teki R, Ravishankar N, uquette DJ, Ramanath G. Kinetics of titania nanotube formation by anodization of titanium films. Thin Solid Films 2011; 519(6): 1821-1824.
[42] Sjöström T, Lalev G, Mansell JP, Su B. Initial attachment and spreading of MG63 cells on nanopatterned titanium surfaces via through-mask anodization. Applied Surface Science 2011; 257(10): 4552-4558.
[43] Rautray TR, Narayanan R, Kim KH. Ion implantation of titanium based biomaterials. Progress in Materials Science 2011; 56(8): 1137-1177.
[44] Savaloni H, Khojier K, Torabi S. Influence of N+ ion implantation on the corrosion and nano-structure of Ti samples. Corrosion Science 2010; 52(4): 1263-1267.
[45] Wolle CF, Vasconcellos MA, Hinrichs R, Becker AN, Barletta FB. The Effect of Argon and Nitrogen Ion Implantation on Nickel-Titanium Rotary Instruments. Journal of Endodontics 2009; 35(11): 1558-1562.
[46] Faria AC, Beloti MM, Rosa AL. Nitric acid passivation does not affect in vitro biocompatibility of titanium. The International Journal of Oral & Maxillofacial Implants 2003; 18(6): 820-825.
[47] Protivínský J, Appleford M, Strnad J, Helebrant A, Ong JL. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. The International Journal of Oral & Maxillofacial Implants 2007; 22(4): 542-550.
[48] Nakagawa M, Zhang L, Udoh K, Matsuya S, Ishikawa K. Effects of hydrothermal treatment with CaCl2 solution on surface property and cell response of titanium implants. Journal of Materials Science: Materials in Medicine 2005; 16(11): 985-991.
[49] Jaeggi C, Frauchiger V, Eitel F, Stiefel M, Schmotzer H, Siegmann S. The effect of surface alloying of Ti powder for vacuum plasma spraying of open porous titanium coatings. Acta Materialia 2011; 59(2): 717-725.
[50] Morks MF. Plasma spraying of zirconia–titania–silica bio-ceramic composite coating for implant application. Materials Letters 2010; 64(18): 1968-1971.
[51] Darimont GL, Cloots R, Heinen E, Seidel L, Legrand R. In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 2002; 23(12): 2569-2575.
[52] Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, and Aref A. Biomimetic calcium phosphate composite coating of dental implants. The International Journal of Oral & Maxillofacial Implants 2006; 21(5):738-746.
[53] Barros AD, Albertin KF, Miyoshi J, Doi I, Diniz JA . Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications. Microelectronic Engineering 2010; 87(3): 443-446.
[54] Kumar S, Narayanan TSN, Raman SG, Seshadri SK. Thermal oxidation of CP Ti — An electrochemical and structural characterization. Materials Characterization 2010; 61(6): 589-597.
[55] Park YJ, Song HJ, Kim I, and Yang HS. Surface characteristics and bioactivity of oxide film on titanium metal formed by thermal oxidation. Journal of Materials Science: Materials in Medicine 2007; 18(4): 565-575.
[56] Wen HB, Wolke JGC, de Wijn JR, Liu Q, Cui FZ, de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 1977; 18(22): 1471-1478.
[57] Chen Y, Zheng X, Xie Y, Ji H, Ding C. Antibacterial properties of vacuum plasma sprayed titanium coatings after chemical treatment. Surface and Coatings Technology 2009; 204(5): 685-690.
[58] Ohtsu N, Hayashi M, Ueta J, Kanno T. Biofunctional calcium titanate coating on titanium by simple chemical treatment process using calcium-hydroxide slurry—Effects of the heating temperatures. Progress in Organic Coatings 2011; 70(4): 353-357.
[59] Stoch A, Jastrze¸bski W, Długoń E, Lejda W, Trybalska B, Stoch GJ, Adamczyk A. Sol–gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. Journal of Molecular Structure 2005; 744-747(3): 633-640.
[60] Ochsenbein A, Chai F, Winter S, Traisnel M, Breme J, Hildebrand HF. Osteoblast responses to different oxide coatings produced by the sol–gel process on titanium substrates. Acta Biomaterialia 2008; 4(5): 1506-1517.
[61] Kim HW, Koh YH, Li LH, Lee S, Kim HE. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 2004; 25(13): 2533-2538.
[62] Nable JC, Nosheen S, Suib SL, Francis S. Galasso FS. Atmospheric pressure chemical vapor deposition of titanium nitride on metals. Surface and Coatings Technology 2006; 200(8): 2821-2826.
[63] Nolan MG, Pemble ME, Sheel DW, Yates HM. One step process for chemical vapour deposition of titanium dioxide thin films incorporating controlled structure nanoparticles. Thin Solid Films 2006; 515(4): 1956-1962.
[64] Cheng HE, Wen YW. Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition. Surface and Coatings Technology 2004; 179(1): 103-109.
[65] Nishiguchi S, Kato H, Fujita H, Oka M, Kim HM, Kokubo T, Nakamura T. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 2001; 22(18): 2525-2533.
[66] Liang F, Zhou L, Wang K. Apatite formation on porous titanium by alkali and heat-treatment. Surface and Coatings Technology 2003; 165(2): 133-139.
[67] Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, and Nakamura T. Biology of alkali- and heat-treated titanium implants. Journal of Biomedical Materials Research Part A 2003; 67(1): 26-35.
[68] Masuda Y, Sugiyama T, Lin H, Seo WS, Koumoto K. Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers. Thin Solid Films 2001; 382(1-2): 153-157.
[69] Oliveira EM, Beyer S, Heinze J. SECM characterization of immobilised enzymes by self-assembled monolayers on titanium dioxide surfaces. Bioelectrochemistry 2007; 71(2): 186-191.
[70] Liu Q, Ding J, Mante FK, Wunder SL, Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials 2002; 23(15): 3103-3111.
[71] Morra M. Biomolecular modification of implant surfaces. Expert Review of Medical Devices 2007; 4(3): 361-372.
[72] Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S. Functionalization of dental implant surfaces using adhesion molecules. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005; 73(1): 88-96.
[73] Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, Ma X. Enhanced osteoblast functions on RGD immobilized surface. Journal of Oral Implantology 2003; 29(2):73-79.
[74] Rammelt S, Schulze E, Bernhardt R, Hanisch U, Scharnweber D, Worch H, Zwipp H, Biewener A. Coating of titanium implants with type-I collagen. Journal of Orthopaedic Research 2004; 22(5): 1025-1034.
[75] Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL. Effect of surface roughness of ground titanium on initial cell adhesion. Biomolecular Engineering 2004; 21(3-5): 93-97.
[76] Kim MJ, Kim CW, Lim YJ, Heo SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. Journal of Biomedical Materials Research Part A 2006; 79(4): 1023-1032.
[77] Wirth C, Comte V, Lagneau C, Exbrayat P, Lissac M, Jaffrezic-Renault N, Ponsonnet L. Nitinol surface roughness modulates in vitro cell responses: a comparison between fibroblast and osteoblast. Materials Science and Engineering: C 2005; 25(1): 51-60.
[78] Dongwoo K, Jing L, Chang Y, Karen MH, Thomas JW. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008; 29(8): 970-983.
[79] Cai K, Bossert J, Jandt KD. Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces 2006; 49(2): 136-144.
[80] Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 2004; 178(1): 13-22.
[81] Xie Y, Liu X, Huang A, Ding C, Chu PK. Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials 2005; 26(31): 6129-6135.
[82] Takadama H, Kim HM, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid. Science and Technology of Advanced Materials 2001; 2(2): 389-396.
[83] Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials 2007; 23(7):844-854.
[84] Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M. Roughness response genes in osteoblasts. Bone 2004; 35(1): 124-133.
[85] 許育晟,奈米級表面粗糙度之生醫級鈦合金材料應用於骨母細胞與纖維母細胞反應性研究,國立成功大學 製造工程研究所 博士論文,2008。
[86] Keselowsky BG, Wang L, Schwartz Z, Garcia AJ, Boyan BD. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. Journal of Biomedical Materials Research Part A 2007; 80(3): 700-710.
[87] Lu X, Leng Y. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. Journal of Biomedical Materials Research Part A 2003; 66(3): 677-687.
[88] Cutler SM, García AJ. Engineering cell adhesive surfaces that direct integrin alpha5beta1 binding using a recombinant fragment of fibronectin. Biomaterials 2003; 24(10): 1759-1770.
[89] Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrate on cell behavior in vitro and in vivo. Journal of Biomechanical Engineering 1999; 121(1): 49-55.
[90] García AJ. Get a grip integrins in cell-biomaterial interactions. Biomaterials 2005; 26(36):7525-7529.
[91] Anselme K. Review: osteoblast adhesion on biomaterials. Biomaterials 2000; 21(7): 667-681.
[92] MacDonald DE, Rapuano BE, Deo N, Stranickc M, Somasundaran P, Boskeyd AL. Thermal and chemical modification of titanium-aluminum-vanadium implant materials effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 2004; 25(16): 3135-3146.
[93] Advinculaa MC, Rahemtulla FG, Advinculac RC, Adae ET, Lemonsa JE, Bellisa SL, Osteoblast adhesion and matrix mineralization on sol–gel-derived titanium oxide. Biomaterials 2006; 27(10): 2201-2212.
[94] Zhou W, Zhong X, Wu X, Yuan L, Zhao Z, Wang H, Xia Y, Feng Y, He J, Chen W. The effect of surface roughness and wettability of nanostructured TiO2 film on TCA-8113 epithelial-like cells. Surface & Coatings Technology 2006; 200(20-21): 6155-6160.
[95] Brossa F, Cigada A, Fare S, Chiesa R, Paracchini L. Tribological behaviour of Ti6Al4V modified by surface treatments. Journal of Materials Science: Materials in Medicine 1996; 7(8): 471-474.
[96] Katsumata K, Nakajima A, Shiota T, Yoshida N, Watanabe T, Kameshima Y, Okada K. Photoinduced surface roughness variation in polycrystalline TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry 2006; 180(1-2): 75-79.
[97] Miyauchi M, Kieda N, Hishita S, Mitsuhashi T, Nakajima A, Watanabe T, Hashimoto K. Reversible wettability control of TiO2 surface by light irradiation. Surface Science 2002; 511(1-3): 401-407.
[98] Poulios I, Aetopoulou I. Photocatalytic Degradation of the Textile Dye Reactive Orange 16 in the Presence of TiO2 Suspensions. Environmental Technology 1999; 20(5): 479-487.
[99] Senthilkumaar S, Porkodi K. Heterogeneous photocatalytic decomposition of Crystal Violet in UV-illuminated sol–gel derived nanocrystalline TiO2 suspensions. Journal of Colloid and Interface Science 2005; 288(1): 84-189.
[100] 曾怡享,奈米金屬氧化鈦觸媒光催化還原二氧化碳,國立台灣大學 化學工程學系 碩士論文,2002。
[101] 林業騫,銀鉭系波洛斯凱特型與二氧化鈦光觸媒用於二氧化碳光催化還原反應之效能-光觸媒物性和光學性質之鑑定及光催化活性之初步測定-,國立成功大學 化學工程學系 碩士論文,2008。
[102] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999; 20(6): 573-588.
[103] Deligianni DD, Katsala N. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation, and detachment strength. Biomaterials 2001; 22(1):87-96.
[104] Deligianni DD, Katsala N. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001; 22(11):1241-1251.
[105] Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering 2003; 23(4): 551-560.
[106] Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004; 25(19): 4731-4739.
[107] Lim YJ, Oshida Y. Initial contact angle measurements on variously treated dental/medical titanium materials. Bio-Medical Materials and Engineering 2001; 11(4): 325-341.
[108] Wang CC, Huang YH. Correlation of UV irradiation-induced wettability characteristics by factorial design of experiments on Ti6Al4V. International Journal of the Physical Sciences 2011; 6(19): 4589-4594.
[109] Zhao JL, Wang XH, Sun TY, Li LT. Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. Journal of Alloys and Compounds 2007; 434-435: 792-795.
[110] Balaur E, Macak JM, Tsuchiya H, Schmuki P. Wetting behaviour of layers of TiO2 nanotubes with different diameters. Journal of Materials Chemistry 2005; 15(42): 4488-4491.
[111] Yao C, Perla V, McKenzie JL, Slamovich EB, Webster TJ. Anodized Ti and Ti6Al4V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion. Journal of Biomedical Nanotechnology 2005; 1(1):68-73.
[112] Lin JC, Chuang WH. Synthesis, surface characterization and platelet reactivity evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality. Journal of Biomedical Materials Research Part A 2000; 51(3): 413-423.
[113] van Kooten TG, Schakenraad JM, van der Mei HC, Busscher HJ. Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials 1992; 13(13): 897-904.
[114] 龔冠臣,鈦金屬陽極化表面處理之研究,國立成功大學 口腔醫學研究所 碩士論文,2007。
[115] Huang YH, Kung KC, Lee TM, Wang CC. The use of factorial design for proliferation assay of hFOB cells on different TiO2 nanotube arrays. Scientific Research and Essays 2011; 6(27): 5750-5756.
[116] Eisenbarth E, Linez P, Biehl V, Velten D, Breme J, Hildebrand HF. Cell orientation and cytoskeleton organization on ground titanium surfaces. Biomolecular Engineering 2002; 19(2-6): 233-237.
[117] Perizzolo D, Lacefield WR, Brunette DM. Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite- and titanium-coated micromachined surfaces. Journal of Biomedical Materials Research 2001; 56(4): 494-503.
[118] Thian ES, Ahmad Z, Huang J, Edirisinghe MJ, Jayasinghe SN, Ireland DC, Brooks R A, Rushton N, Bonfield W, Best S M. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials 2008; 29(12): 1833-1843.
[119] Galli C, Coen MC, Hauert R, Katanaev VL. Creation of nanostructure to study the topographical dependency of protein adsorption. Colloids and Surfaces B: Biointerfaces 2002; 26(3): 255-267.
[120] Pilliar RM. Overview of surface variability of metallic endosseous dental implants: textured and porous surface-structured designs. Implant Dentistry 1998; 7(4): 305–312.
[121] Chehroudi B, Gould TR, Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently. Journal of Biomedical Materials Research 1990; 24(9): 1203–1219.
[122] Meyle J, Gulting K, Wolburg H, von Recum AF. Fibroblast anchorage to microtextured surfaces. Journal of Biomedical Materials Research 1993; 27(12): 1553–1557.