簡易檢索 / 詳目顯示

研究生: 林嘉倫
Lin, Chia-Lun
論文名稱: 評估新穎治療標的顆粒蛋白對於糖尿病肌少症的治療效果
Evaluation of a novel therapeutic target, Granulin for the treatment of diabetic sarcopenia
指導教授: 歐弘毅
Ou, Horng-Yih
共同指導教授: 吳泓璁
Wu, Hung-Tsung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: Granulin第二型糖尿病肌少症葡萄糖攝取蛋白質合成
外文關鍵詞: Granulin, Type 2 diabetes, Sarcopenia, Glucose uptake, Protein synthesis
相關次數: 點閱:132下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在糖尿病的症狀中,常會伴隨肌少症的發生,且根據一些研究統計顯示,若年長者又同時患有糖尿病時,其罹患肌少症之機率將較於同年齡者高。而造成此現象之原因可能為糖尿病有關的胰島素阻抗。也就是說,對於胰島素阻抗的患者來說,可能加重了患者的代謝紊亂並也影響了在治療上的反應。在本實驗室先前於小鼠動物模型研究之微陣列 (Microarray) 實驗中顯示,相較於控制組,糖尿病小鼠模型之Grn表現有下調的情況,且在本研究顯示,相較於控制組,在肌少症之動物模型中,其GRN之表現量有下調的現象,並在臨床上的肌少症病患中,也發現了相同的現象。因此我們首先以觀察葡萄糖代謝以及蛋白質代謝路徑來確認GRN對於肌肉細胞之影響。而結果表明,GRN不僅能促進骨骼肌細胞的葡萄糖攝取,亦能增強細胞中的蛋白質合成,此外,GRN更有抑制細胞自噬的功能。故根據此結果推斷,GRN能透過促進細胞中之葡萄糖攝取,而有調控血糖之潛力,且因GRN能促進骨骼肌細胞中蛋白質合成,故有以增加肌肉細胞之質量之潛力,更因GRN有抑制骨骼肌細胞自噬之功能,由此結果我們認為,GRN在治療糖尿病肌少症上具有很大的潛力,值得未來的進一步開發。

    Sarcopenia is a risk factor for other subsequent physical symptoms, such as disability, deterioration of mobility and even death. In fact, sarcopenia caused by type 2 diabetes imposes a considerable burden on the Taiwan’s medical care system. At the beginning of this study, we found that GRN may be able to regulate cell glucose uptake. Moreover, GRN is related to the metabolism of skeletal muscle. For example, GRN stimulates phosphorylation of the protein kinase Akt in cells. If the phosphorylation of Akt was reduced, it would inhibit the downward transmission of metabolism signal. Therefore, we wanted to learn more about the effects of GRN’s function on metabolic pathways of skeletal muscle cells. Then, based on the results in this study, we found that the GRN enhanced the protein synthesis in skeletal muscle cells. Furthermore, according to other results in this study, we inferred that GRN could also increase the concentration of calcium in cells through the signaling receptor EphA2, which in turn enhances the phosphorylation of Akt, and thereby inducing the translocation of GLUT4 to increase glucose uptake in cells.

    考試合格證明, I 中文摘要, II 英文延伸摘要, III 誌謝, X 表目錄, XIII 圖目錄, XIV 第一章 緒論, 1 1-1第二型糖尿病, 2 1-2肌少症, 3 1-3骨骼肌, 5 1-3-1第一型骨骼肌, 5 1-3-2第二型骨骼肌, 5 1-4第二型糖尿病與肌少症之相關性, 6 1-5 Granulin (GRN), 8 1-6蛋白質激酶B (protein kinase B; AKT), 9 1-7第四型葡萄糖轉運蛋白(glucose transporter 4; GLUT4), 10 1-8 蛋白質合成 (protein synthesis), 11 1-9 EPH receptor A2(EphA2), 12 第二章 研究動機與目的, 13 第三章 實驗材料與研究方法, 15 3-1實驗動物, 16 3-2臨床研究, 16 3-3細胞培養與處理, 17 3-4蛋白質樣品製備, 17 3-4-1細胞之蛋白質萃取, 17 3-4-2動物組織之蛋白質萃取, 18 3-5西方墨點法 (western blot) , 19 3-5-1聚丙烯醯胺膠體電泳 (SDS PAGE) ,19 3-5-2轉漬 (transfer), 19 3-6核糖核酸樣品製備, 21 3-6-1細胞之核糖核酸樣品製備, 21 3-6-2動物組織之核糖核酸樣品製備, 22 3-7即時聚合酶鏈反應儀 (real-time PCR) , 22 3-7-1互補脫氧核糖核酸 (complementary DNA, cDNA)樣品製備, 22 3-7-2 Real-Time PCR分析目標基因表現, 23 3-8葡萄糖攝取 (2-NBDG assay), 24 3-9酵素免疫吸附分析法 (Enzyme-linked immunosorbent assay; ELISA), 24 3-10免疫組織化學染色 (immunohistochemistry, IHC), 25 3-11 細胞免疫螢光染色(Immunofluorescence, IF), 26 3-12細胞增生分析 (MTT Assay), 26 3-13流式細胞儀 (flow cytometry), 27 3-14蛋白質合成 (Protein synthesis assay), 27 3-15基因敲低 (knockdown), 28 3-16統計分析 (statistical analysis), 29 第四章 實驗結果, 30 4-1 GRN在第二型糖尿病小模型鼠骨骼肌中的表現, 31 4-2 GRN對於L6細胞葡萄糖代謝的影響, 31 4-3 GRN在肌少症之動物模型中的表現, 33 4-4 GRN對L6細胞分化、增生與蛋白質合成之影響, 34 4-5 GRN對於臨床之肌少症患者之影響, 35 4-6 GRN對於L6細胞自噬的影響, 35 4-7 EphA2對於GRN 相關代謝路徑的調控, 36 第五章 討論, 38 第六章 參考文獻, 43

    1. Balakumar, P., U.K. Maung, and G. Jagadeesh, Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res, 113(Pt A): p. 600-609. 2016.
    2. Todd, J.N., S. Srinivasan, and T.I. Pollin, Advances in the Genetics of Youth-Onset Type 2 Diabetes. Curr Diab Rep, 18(8): p. 57. 2018.
    3. Gómez-Banoy, N., et al., Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med, 25(11): p. 1739-1747. 2019.
    4. Govers, R., Molecular mechanisms of GLUT4 regulation in adipocytes. Diabetes Metab, 40(6): p. 400-10. 2014.
    5. Qiu, S., et al., Exercise training and endothelial function in patients with type 2 diabetes: a meta-analysis. Cardiovasc Diabetol, 17(1): p. 64. 2018.
    6. Scherübl, H., [Type-2-diabetes and cancer risk]. Dtsch Med Wochenschr, 146(18): p. 1218-1225. 2021.
    7. Wiedmer, P., et al., Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev, 65: p. 101200. 2021.
    8. Murgia, M., et al., Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep, 19(11): p. 2396-2409. 2017.
    9. Chapman, N.M., S. Shrestha, and H. Chi, Metabolism in Immune Cell Differentiation and Function. Adv Exp Med Biol, 1011: p. 1-85. 2017.
    10. Präbst, K., et al., Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods Mol Biol,. 1601: p. 1-17. 2017
    11. Areta, J.L., et al., Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol, 591(9): p. 2319-31. 2013.
    12. Polyzos, S.A. and A.N. Margioris, Sarcopenic obesity. Hormones (Athens), 17(3): p. 321-331. 2018.
    13. Hong, S.H. and K.M. Choi, Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci, 21(2). 2020.
    14. Riuzzi, F., et al., Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle, 9(7): p. 1255-1268. 2018.
    15. Studenski, S.A., et al., The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci, 69(5): p. 547-58. 2014.
    16. Chen, L.K., et al., Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc, 21(3): p. 300-307.e2. 2020.
    17. Papa, S., et al., The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol, 942: p. 3-37. 2012.
    18. Casuso, R.A., et al., Hydroxytyrosol modifies skeletal muscle GLUT4/AKT/Rac1 axis in trained rats. J Cell Physiol, 236(1): p. 489-494. 2021.
    19. Spencer, G.S. and M.J. Eccles, Spinal muscle in scoliosis. Part 2. The proportion and size of type 1 and type 2 skeletal muscle fibres measured using a computer-controlled microscope. J Neurol Sci, 30(1): p. 143-54. 1976.
    20. Wade, A.J., M.M. Marbut, and J.M. Round, Muscle fibre type and aetiology of obesity. Lancet, 335(8693): p. 805-8. 1990.
    21. Gaster, M., et al., GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes, 50(6): p. 1324-9. 2001.
    22. Bijlsma, A.Y., et al., Diagnostic criteria for sarcopenia relate differently to insulin resistance. Age (Dordr), 35(6): p. 2367-75. 2013.
    23. Huang, S. and M.P. Czech, The GLUT4 glucose transporter. Cell Metab, 5(4): p. 237-52. 2007.
    24. Tavares, M.R., et al., The S6K protein family in health and disease. Life Sci, 131: p. 1-10. 2015.
    25. Park, S., S.H. Kim, and J.Y. Shin, Combined association of skeletal muscle mass and grip strength with cardiovascular diseases in patients with type 2 diabetes. J Diabetes, 13(12): p. 1015-1024. 2021.
    26. Rietman, A., et al., High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr, 68(9): p. 973-9. 2014.
    27. Ley, S.H., et al., Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet, 383(9933): p. 1999-2007. 2014.
    28. Gregor, M.F. and G.S. Hotamisligil, Inflammatory mechanisms in obesity. Annu Rev Immunol, 29: p. 415-45. 2011.
    29. Sugihara, H., et al., Progranulin deficiency leads to prolonged persistence of macrophages, accompanied with myofiber hypertrophy in regenerating muscle. J Vet Med Sci, 80(2): p. 346-353. 2018.
    30. Zhou, X., et al., Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun, 8: p. 15277. 2017.
    31. Borroni, B., et al., Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol Aging, 33(10): p. 2506-20. 2012.
    32. Premi, E., et al., Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study. Neurobiol Aging, 108: p. 155-167. 2021.
    33. Nielsen, S.R., et al., Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol, 18(5): p. 549-60. 2016.
    34. Yip, C.W., et al., Granulin-epithelin precursor interacts with heparan sulfate on liver cancer cells. Carcinogenesis, 35(11): p. 2485-94. 2014.
    35. Liu, J., et al., PGRN induces impaired insulin sensitivity and defective autophagy in hepatic insulin resistance. Mol Endocrinol, 29(4): p. 528-41. 2015.
    36. Hou, N., et al., Carvacrol Attenuates Diabetic Cardiomyopathy by Modulating the PI3K/AKT/GLUT4 Pathway in Diabetic Mice. Front Pharmacol, 10: p. 998. 2019.
    37. Luo, W., et al., High glucose inhibits myogenesis and induces insulin resistance by down-regulating AKT signaling. Biomed Pharmacother, 120: p. 109498. 2019.
    38. Zeng, Y., et al., A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics, 7(16): p. 3842-3855. 2017.
    39. Xia, P. and X.Y. Xu, PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res, 5(5): p. 1602-9. 2015.
    40. Sharma, V.R., et al., PI3K/Akt/mTOR Intracellular Pathway and Breast Cancer: Factors, Mechanism and Regulation. Curr Pharm Des, 23(11): p. 1633-1638. 2017.
    41. Morita, M., et al., mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 14(4): p. 473-80. 2015.
    42. Yu, J.S. and W. Cui, Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development, 143(17): p. 3050-60. 2016.
    43. Wang, Y. and H. Zhang, Regulation of Autophagy by mTOR Signaling Pathway. Adv Exp Med Biol, 1206: p. 67-83. 2019.
    44. Odle, R.I., et al., An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis. Mol Cell, 77(2): p. 228-240.e7. 2020.
    45. Veys, K., et al., Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity. Circ Res, 127(4): p. 466-482. 2020.
    46. Richter, E.A. and M. Hargreaves, Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev, 93(3): p. 993-1017. 2013.
    47. Li, D.T., et al., GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. Yale J Biol Med, 92(3): p. 453-470. 2019.
    48. Abeyrathna, P. and Y. Su, The critical role of Akt in cardiovascular function. Vascul Pharmacol, 74: p. 38-48. 2015.
    49. Govers, R., Cellular regulation of glucose uptake by glucose transporter GLUT4. Adv Clin Chem, 66: p. 173-240. 2014.
    50. Stewart, M.J. and G. Thomas, Mitogenesis and protein synthesis: a role for ribosomal protein S6 phosphorylation? Bioessays, 16(11): p. 809-15. 1994.
    51. Gloge, F., et al., Co-translational mechanisms of protein maturation. Curr Opin Struct Biol, 24: p. 24-33. 2014.
    52. Charmpilas, N., et al., Protein synthesis as an integral quality control mechanism during ageing. Ageing Res Rev, 23(Pt A): p. 75-89. 2015.
    53. de Proença, A.R.G., et al., Insulin action on protein synthesis and its association with eIF5A expression and hypusination. Mol Biol Rep, 46(1): p. 587-596. 2019.
    54. Porta, C., C. Paglino, and A. Mosca, Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol, 4: p. 64. 2014.
    55. Neill, T., et al., EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol, 215(5): p. 687-703. 2016.
    56. Wang, H., et al., Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep, 34(8): p. 108765. 2021.
    57. Miao, H., et al., EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene, 34(5): p. 558-67. 2015.
    58. Funk, S.D., et al., EphA2 stimulates VCAM-1 expression through calcium-dependent NFAT1 activity. Cell Signal, 49: p. 30-38. 2018.
    59. Dodelet, V.C. and E.B. Pasquale, Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene, 19(49): p. 5614-9. 2000.
    60. Han, J., et al., EphA2 inhibits SRA01/04 cells apoptosis by suppressing autophagy via activating PI3K/Akt/mTOR pathway. Arch Biochem Biophys, 711: p. 109024. 2021.
    61. Hernandez, R., T. Teruel, and M. Lorenzo, Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Lett, 494(3): p. 225-31. 2001.
    62. Magnuson, B., B. Ekim, and D.C. Fingar, Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J, 441(1): p. 1-21. 2012.
    63. Ruvinsky, I. and O. Meyuhas, Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci, 31(6): p. 342-8. 2006.
    64. Wang, L., et al., Optical coherence tomography angiography for noninvasive evaluation of angiogenesis in a limb ischemia mouse model. Sci Rep, 9(1): p. 5980. 2019.
    65. Lamarche, É., et al., SMAD2 promotes myogenin expression and terminal myogenic differentiation. Development, 148(3). 2021.
    66. Puente, C., R.C. Hendrickson, and X. Jiang, Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. J Biol Chem, 291(11): p. 6026-6035. 2016.
    67. Liao, J., et al., A novel Ca(2+) indicator for long-term tracking of intracellular calcium flux. Biotechniques, 70(5): p. 271-277. 2021.
    68. Cleasby, M.E., P.M. Jamieson, and P.J. Atherton, Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol, 229(2): p. R67-81. 2016.
    69. Saneyasu, T., et al., Differential regulation of protein synthesis by skeletal muscle type in chickens. Gen Comp Endocrinol, 284: p. 113246. 2019.
    70. Lang, C.H., R.A. Frost, and T.C. Vary, Regulation of muscle protein synthesis during sepsis and inflammation. Am J Physiol Endocrinol Metab, 293(2): p. E453-9. 2007.
    71. Yoo, A., et al., Chrysanthemi Zawadskii var. Latilobum Attenuates Obesity-Induced Skeletal Muscle Atrophy via Regulation of PRMTs in Skeletal Muscle of Mice. Int J Mol Sci, 21(8). 2020.
    72. Sharma, B.R., H.J. Kim, and D.Y. Rhyu, Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med, 13: p. 62. 2015.
    73. Divolis, G., et al., Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways. Cell Biol Toxicol, 32(5): p. 437-49. 2016.
    74. Hughes, J.W., et al., Regulation of islet glucagon secretion: Beyond calcium. Diabetes Obes Metab, 20 Suppl 2(Suppl 2): p. 127-136. 2018.
    75. Noda, T., Regulation of Autophagy through TORC1 and mTORC1. Biomolecules, 7(3). 2017.
    76. Kitada, M. and D. Koya, Autophagy in metabolic disease and ageing. Nat Rev Endocrinol, 17(11): p. 647-661. 2021.
    77. Schiffer, I., et al., miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact proteotoxicity and muscle function during aging. Elife, 10. 2021.
    78. Tanaka, A., et al., Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity. Arthritis Res Ther, 14(6): p. R244. 2012.

    下載圖示 校內:2024-08-08公開
    校外:2024-08-08公開
    QR CODE