| 研究生: |
何星融 Ho, Hsing-Jung |
|---|---|
| 論文名稱: |
鋰三元電池廢正極材料有價金屬再生之研究 Recovery of Valuable Metals from Lithium-ion Batteries Waste NMC Cathode Materials |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 鋰三元電池廢正極材料 、酸溶浸漬 、溶媒萃取 、選擇性化學沉澱 、資源再生 |
| 外文關鍵詞: | Lithium-ion batteries waste NMC cathode materials, Cobalt, Nickel, Manganese, Lithium, Hydrometallurgy, Recycling |
| 相關次數: | 點閱:113 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對鋰三元電池正極材料進行金屬資源再生之研究,實驗主要分為三大部分,第一部分為鋰三元電池正極材料的特性分析及酸溶浸漬研究,藉由化學成分分析、表面特性分析及結晶相分析,作為後續研究規劃之依據。再以探討各項酸溶浸漬之實驗參數,得到最佳化之浸漬參數,鋰、鈷、鎳、錳之浸漬效率皆達98.5%以上,並透過浸漬反應動力學之研究,得到此浸漬反應決定步驟為表面化學反應及內擴散反應混合控制機制,各金屬之浸漬活化能分別為鈷47.25 kJ/mol、鎳45.25 kJ/mol、錳44.74 kJ/mol、鋰27.70 kJ/mol。
本研究之第二部分為金屬分離純化之研究,主要方法透過溶媒萃取及選擇性化學沉澱進行金屬分離,並使用分離係數(Separation factor)、分配比(Distribution ratio)、萃取效率及沉澱效率作為指標數據。首先使用Na-Cyanex 272進行第一階段萃取分離,將鈷、錳離子進行選擇性萃取,鋰、鎳離子則留於萃餘液中。有機相中之鈷、錳離子藉由反萃取過程回到水溶液中,並使用Na-D2EHPA作為萃取劑進行二階段萃取分離,將錳離子萃取至有機相,鈷離子留於萃餘液中,再利用反萃取使錳離子回到水相。鋰、鎳離子則透過丁二酮肟進行選擇性化學沉澱,藉由鎳離子與丁二酮肟形成紅色難溶錯合物,使鋰、鎳有效分離。
第三部分為金屬產物析出之研究,根據最終產物之不同,分別使用兩種研究步驟,第一種為濃縮結晶法,藉由減壓濃縮製成硫酸鈷與氯化鎳;第二種為化學沉澱法,利用碳酸鈉及氫氧化鈉進行化學沉澱反應,得到碳酸鋰與金屬氫氧化物之沉澱物,經高溫煅燒後,得到氧化鈷、氧化鎳、氧化錳。鋰、鈷、鎳之產物純度皆達99.5%以上,錳之產物純度亦達93.3%。
The paper is focused on the improved process of waste NMC cathode materials from LIBs by using hydrometallurgical methods. In the acid leaching step, the essential effects of acidity concentration, oxidizing reagent concentration, leaching time, liquid-solid mass ratio and reaction temperature with the leaching percentage are investigated. The cathode material is leached with 2M H2SO4 and 10 vol.% H2O2 at 70 ˚C and 300 rpm using a liquid-solid mass ratio of 30 ml/g and the leaching efficiency of Co is 98.5%, Li is 99.8%, Ni is 98.6% and Mn is 98.6% under optimum conditions. In order to improve the recovery process, this paper design the proper separation process to recover valuable metals. The leach liquor in the recovery process is used Cyanex 272 to extract Co and Mn into organic phase at first. Secondly, Co and Mn are separated by using D2EHPA and high purity of Co will be obtained. Thirdly, the Ni is selectively extracted by using dimethylglyoxime and Ni will completely to form a solid complex. Finally, the remaining Li in leach liquor is recovered as Li2CO3 precipitated by saturated Na2CO3. On the other hand, Co is recovered as Co3O4 and CoSO4, Ni is recovered as NiO and NiCl2 and Mn is recovered as Mn3O4 in chemical precipitation process and rotary evaporation process.
[1] S. Liu, L. Xiong and C. He, “Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode,” Journal of Power Sources, vol. 261, no. 1, pp. 285-291, 2014
[2] X. Zeng, J. Li and B. Shen, “Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid,” Journal of Hazardous Materials, vol. 295, no. 15, pp. 112-118, 2015
[3] J. Kang, G. Senanayake, J. S. Sohn and S. M. Shin, “Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272,” Hydrometallurgy, vol. 100, no. 3-4, pp. 168-171, 2010
[4] H. M. Li and K. Jiang, “An Analysis of Waste Lithium-Ion Battery Contamination to Environment and Its Countermeasures,” Shanghai Environmental Sciences, vol. 23, no. 5, pp. 201-203, 2004
[5] A. A. Nayl, R. A. Elkhashab, S. M. Badawy, M. A. El-Khateeb, “Acid leaching of mixed spent Li-ion batteries,” Arabian Journal of Chemistry, vol. 10, no. 2, pp. 3632-3639, 2017
[6] P. Meshram, B. D. Pandey, T. R. Mankhand, “Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching,” Chemical Engineering Journal, vol. 281, no. 1, pp. 418-427, 2015
[7] F. Pagnanelli, E. Moscardini, P. Altimari, T. A. Atia, L. Toro, “Cobalt products from real waste fractions of end of life lithium ion batteries,” Waste Management, vol. 51, no. 1, pp. 214-221, 2016
[8] G. P. Nayaka, K. V. Pai, G. Santhosh, J. Manjanna, “Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent,” Journal of Environmental Chemical Engineering, vol. 4, no. 2, pp. 2378-2383, 2016
[9] E. G. Pinna, M. C. Ruiz, M. W. Ojeda, M. H. Rodriguez, “Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors,” Hydrometallurgy, vol. 167, no. 1, pp. 66-71, 2017
[10] S. P. Barik, G. Prabaharan, B. Kumar, “An innovative approach to recover the metal values from spent lithium-ion batteries,” Waste Management, vol. 51, no. 1, pp. 222-226, 2017
[11] Y. Huang, G. Han, J. T. Liu, W. C. Chai, S. P. Su, “A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process,” Journal of Power Sources, vol. 325, no. 1, pp. 555-564, 2016
[12] S. G. Zhu, W. Z. He, G. M. Li, X. Zhou, J. W. Huang, “Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation” Transactions of Nonferrous Metals Society of China, vol.22, no. 9, pp. 2274-2281, 2012
[13] A. A. Nayl, M. M. Hamed, S. E. Rizk, “Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries,” journal of the Taiwan Institute of Chemical Engineers, vol. 55, no. 1, pp. 119-125, 2015
[14] B. Swain, J. Jeong, J. C. Lee, G. H. Lee, “Separation of cobalt and lithium from mixed sulphate solution using Na-Cyanex 272,” Hydrometallurgy, vol. 84, no. 3-4, pp. 130-138, 2006
[15] L. Y. Wang, M. S. Lee, “Separation of Co(II) and Ni(II) from chloride leach solution of nickel laterite ore by solvent extraction with Cyanex 301,” International Journal of Mineral Processing, vol. 116, no. 10, pp. 45-52, 2017
[16] A. Ishikawa, M. Sasaki, S. Narita, A. Takeuchi, K. Yoshino, “Chromatographic formation of a triadic band of lithium in hydrated LTA zeolite: An investigation on lithium isotope separation effects by ion exchange,” Microporous and Mesoporous Materials, vol. 248, no. 1, pp. 115-121, 2017
[17] K. Fukuda, E. Hasegawa, R. Hasegawa, H. Banno, T. Asaka, “One-dimensional ion-conductive grain-aligned polycrystalline lithium titanogallate fabricated by combined techniques of reactive diffusion and ion exchange,” Solid State Ionics, vol. 304, no. 1, pp. 13-19, 2017
[18] B. Swain, Ji. Jeong, J. C. Lee, G. H. Lee, J. S. Sohn, “Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries,” Journal of Power Sources, vol. 167, no. 2, pp. 536-544, 2007
[19] M. K. Jha, A. Kumari, A. K. Jha, V. Kumar, B. D. Pandey, “Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone,” Waste Management, vol. 33, no. 9, pp. 1890-1897, 2013
[20] R. Torkaman, M. Asadollahzadeh, M. T. Mostaedi, M. G. Maragheh, “Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process,” Separation and Purification Technology, vol. 186, no. 2, pp. 318-325, 2017
[21] R. Golmohammadzadeh, F. Rashchi, E. Vahidi, “Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects,” Separation and Purification Technology, vol. 186, no. 2, pp. 318-325, 2017
[22] G. Jian, J. Guo, X. Wang, C. Sun, J. R. Qiu, “Study on Separation of Cobalt and Lithium Salts from Waste Mobile-phone Batteries,” Procedia Environmental Sciences, vol. 16, no. 1, pp. 495-499, 2012
[23] J. Ordoñez, E. J. Gago, A. Girard, “Processes and technologies for the recycling and recovery of spent lithium-ion batteries,” Renewable and Sustainable Energy Reviews, vol. 60, no. 1, pp. 195-205, 2016
[24] J. Hereijgers, T. Vandermeersch, N. V. Oeteren, H. Verelst, W. D. Malsche, “Separation of Co(II)/Ni(II) with Cyanex 272 using a flat membrane microcontactor: Extraction kinetics study,” Journal of Membrane Science, vol. 499, no. 1, pp. 370-378, 2016
[25] J. Hereijgers, T. Vandermeersch, N. V. Oeteren, T. Breugelmans, W, D. Malsche, “Separation of Co(II)/Ni(II) with Cyanex 272 using a flat membrane microcontactor: Stripping kinetics study, upscaling and continuous operation,” Chemical Engineering Research and Design, vol. 111, no. 1, pp. 305-315, 2016
[26] A. Stamp, D. J. Lang, P. A. Wäger, “Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production,” Journal of Cleaner Production, vol. 23, no. 1, pp. 104-112, 2012
[27] F. Gu, J. F. Guo, X. Yao, P. A. Summers, P. Hall, “An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China,” Journal of Cleaner Production, vol. 161, no. 10, pp. 765-780, 2017
[28] K. He, L. Li, W. Ding, “Research on recovery logistics network of waste
electronic and electrical equipment in China,” 3rd IEEE Conf. Ind. Electron. Appl, pp. 1797-1802, 2008
[29] T. C. Chang, S. J. You, B. S. Yu, K. F. Yao, “A material flow of lithium batteries in Taiwan,” Journal of Hazardous Materials, vol. 163, no. 2-3, pp. 910-915, 2009
[30] J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. D. Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, T. Prohaska, “Atomic weights of the elements 2013(IUPAC Technical Report),” Pure Appl. Chem., vol. 88, no. 3, pp. 265-291, 2016
[31] X. Sun, H. Hao, F. Zhao, Z. W. Liu, “Tracing global lithium flow: A trade-linked material flow analysis,” Resources, Conservation and Recycling, vol. 124, no. 1, pp. 50-61, 2017
[32] H. Hao, Z. W. Liu, F. Q. Zhao, Y. Geng, J. Sarkis, “Material flow analysis of lithium in China,” Resources Policy, vol. 51, no. 1, pp. 100-106, 2017
[33] U.S. Geological Survey, “Mineral Commodity Summaries 2013,” 2013
[34] U.S. Geological Survey, “Mineral Commodity Summaries 2014,” 2014
[35] U.S. Geological Survey, “Mineral Commodity Summaries 2015,” 2015
[36] U.S. Geological Survey, “Mineral Commodity Summaries 2016,” 2016
[37] U.S. Geological Survey, “Mineral Commodity Summaries 2017,” 2017
[38] M. Asari, S. I. Sakai, “Li-ion battery recycling and cobalt flow analysis in Japan,” Resources, Conservation and Recycling, vol. 81, no. 1, pp. 52-59, 2013
[39] K. Richa, C. W. Babbitt, G. Gaustad, X. Wang, “A future perspective on lithium-ion battery waste flows from electric vehicles,” Resources, Conservation and Recycling, vol. 83, no. 1, pp. 63-76, 2014
[40] F. C. Liew, “Pyrometallurgy versus Hydrometallurgy,” 2008
[41] P. Baláž, “Mechanical activation in hydrometallurgy,” International Journal of Mineral Processing, vol. 72, no. 1-4, pp. 341-354, 2003
[42] P. Baláž, A. Aláčová, M. Achimovičová, J. Ficeriová, E. Godočíková, “Mechanochemistry in hydrometallurgy of sulphide minerals,” Hydrometallurgy, vol. 77, no. 1-2, pp. 9-17, 2005
[43] A. Nagel, C. Winkler, R. Carle, H. U. Endress, S. Neidhart, “Processes involving selective precipitation for the recovery of purified pectins from mango peel,” Carbohydrate Polymers, vol. 174, no. 15, pp. 1144-1155, 2017
[44] A. Izadi, A. Mohebbi, M. Amiri, N. Izadi, “Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange,” Minerals Engineering, vol. 113, no. 1, pp. 23-35, 2017
[45] M. J. Ryan, A. D. Kney, T. L. Carley, “A study of selective precipitation techniques used to recover refined iron oxide pigments for the production of paint from a synthetic acid mine drainage solution,” Applied Geochemistry, vol. 79, no. 1, pp. 27-35, 2017
[46] J. H. Kang, W. Sun, Y. H. Hu, Z. Y. Gao, X. S. Meng, “The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation,” Water Research, vol. 125, no. 15, pp. 318-324, 2017
[47] N. Kaleli, D. Saraç, “Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods,” The Journal of Prosthetic Dentistry, vol. 117, no. 5, pp. 656-661, 2017
[48] I. González, M. A. Vázquez, A. J. R. Baena, C. B. Brioso, “Stabilization of fly ash using cementing bacteria. Assessment of cementation and trace element mobilization,” Journal of Hazardous Materials, vol. 321 no. 5, pp. 316-325, 2017
[49] R. Jhajharia, D. Jain, A. Sengar, A. Goyal, P. R. Soni, “Synthesis of copper powder by mechanically activated cementation,” Powder Technology, vol. 301 no. 1, pp. 10-15, 2016
[50] H. A. Evans, P. A. Bahri, L. T. T. Vu, K. R. Barnard, “Modelling Cobalt Solvent Extraction using Aspen Custom Modeler,” Computer Aided Chemical Engineering, vol. 33 no. 1, pp. 505-510, 2014
[51] R. Torkaman, M. Asadollahzadeh, M. T. Mostaedi, M. G. Maragheh, “Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process,” Separation and Purification Technology, vol. 186 no. 2, pp. 318-325, 2017
[52] S. Kursunoglu, Z. T. Ichlas, M. Kaya, “Solvent extraction process for the recovery of nickel and cobalt from Caldag laterite leach solution: The first bench scale study,” Hydrometallurgy, vol. 169 no. 1, pp. 135-141, 2017
[53] I. R. Iznaga, V. Petranovskii, G. R. Fuentes, “Ion-exchange of amino- and aqua-complexes of nickel and cobalt in natural clinoptilolite,” Journal of Environmental Chemical Engineering, vol. 2 no. 3, pp. 1221-1227, 2014
[54] G. J. Millar, G. L. Miller, S. J. Couperthwaite, S. Dalzell, D. Macfarlane, “Determination of an engineering model for exchange kinetics of strong acid cation resin for the ion exchange of sodium chloride & sodium bicarbonate solutions,” Journal of Water Process Engineering, vol. 17 no. 1, pp. 197-206, 2017
[55] A. Izadi, A. Mohebbi, M. Amiri, N. Izadi, “Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange,” Minerals Engineering, vol. 113 no. 1, pp. 23-35, 2017
[56] X. P. Chen, Y. B. Chen, T. Zhou, D. P. Liu, S. Y. Fan, “Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries,” Waste Management, vol. 38 no. 1, pp. 349-356, 2015
[57] Y. Guo, F. Li, H. C. Zhu, G. M. Li, W. He, “Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl),” Waste Management, vol. 51 no. 1, pp. 227-233, 2016
[58] C. K. Lee, K. I. Rhee, “Preparation of LiCoO2 from spent lithium-ion batteries,” J.Power Sources, vol. 109 no. 1, pp. 17-21, 2002
[59] S. H. Joo, S. M. Shin, D. J. Shin, C. H. Oh, J. P. Wang, “Extractive separation studies of manganese from spent lithium battery leachate using mixture of PC88A and Versatic 10 acid in kerosene,” Hydrometallurgy, vol. 156 no. 1, pp. 136-141, 2015
[60] N. B. Devi, K.C. Nathsarma, V. Chakravortty, “Separation and recovery of cobalt(II) and nickel(II) from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272,” Hydrometallurgy, vol. 49 no. 1-2, pp. 47-61, 1998
[61] N. B. Devi, K. C. Nathsarma, V. Chakravortty, “Sodium salts of D2EHPA, PC-88A and Cyanex-272 and their mixtures as extractants for cobalt(II),” Hydrometallurgy, vol. 34 no. 3, pp. 331-342, 1994
[62] M. R. Hossain, S. Nash, G. Rose, S. Alam, “Cobalt loaded D2EHPA for selective separation of manganese from cobalt electrolyte solution,” Hydrometallurgy, vol. 107 no. 3-4, pp. 137-140, 2011
[63] P. E. Tsakiridis, S. A. Leonardou, “Process for the recovery of cobalt and nickel in the presence of magnesium from sulphate solutions by Cyanex 272 and Cyanex 302,” Minerals Engineering, vol. 17 no. 7-8, pp. 913-923, 2004
[64] N. Takeno, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases,” Natl. Inst. Adv. Ind. Sci. Technol. Tokyo, no. 419, 2005
[65] C. D. Tsakiroglou, K. Hajdu, K. Terzi, C. Aggelopoulos, M. Theodoropoulou, “A statistical shrinking core model to estimate the overall dechlorination rate of PCE by an assemblage of zero-valent iron nanoparticles,” Chemical Engineering Science, vol. 167 no. 10, pp. 191-203, 2017
[66] X. G. Li, Z. Z. Yang, J. Z. Zhao, Y. T. Wang, T. J. Lei, “A modified shrinking core model for the reaction between acid and hetero-granular rough mineral particles,” Hydrometallurgy, vol. 153 no. 1, pp. 114-120, 2015
[67] B. C. Zhu, “Chemical reaction engineering,” pp, 360-364, 2001
[68] C. F. Dickinsona, G. R. Healb, “Solid-liquid diffusion controlled rate equations” Thermochim Acta, vol. 340-341 no. 1, pp.89-103, 1999
[69] H. L. Sun, H. Y. Yu, B. Wang, Y. Miao, G. F. Tu, S. W. Bi, “Leaching dynamics of 12CaO·7Al2O3,” The Chinese Journal of Nonferrous Metals, vol. 18 no. 10, pp. 1920-1925, 2008
[70] X. P. Chen, T. Zhou, J. R. Kong, H. X. Fang, Y. B. Chen, “Separation and recovery of metal values from leach liquor of waste lithium nickel cobalt manganese oxide based cathodes,” Separation and Purification Technology, vol. 141 no. 1, pp. 76-83, 2015
[71] N. B. Devi, K. C. Nathsarma, V. Chakravortty, “Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272,” Hydrometallurgy, vol. 54 no. 2-3, pp.117-131, 2000
[72] R. C. Wang, Y. C. Lin, S. H. Wu, “A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries,” Hydrometallurgy, vol. 99 no. 3-4, pp. 194-201, 2009
[73] J. Lemaire, L. Svecova, F. Lagallarde, R. Laucournet, P. X. Thivel, “Lithium recovery from aqueous solution by sorption/desorption” Hydrometallurgy, vol. 143 no. 1, pp.1-11, 2014
[74] Z. F. Dai, Xi. L. Xiao, F. Q. Li, P. H. Ma, “Discussion on Methods for the Preparation for High-purity Lithium Carbonate” Journal of Salt Lake Research, vol. 13 no. 2, pp.53-58, 2005
[75] P. Meshram, B. D. Pandey, T. R. Mankhand, “Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review” Hydrometallurgy, vol. 150 no. 1, pp.192-208, 2014
[76] S. H. Joo, D. J. Shin, C. H. Oh, J. P. Wang, J. T. Park, S. M. Shin, “Application of Co and Mn for a Co-Mn-Br or Co-Mn-C2H3O2 Petroleum Liquid Catalyst from the Cathode Material of Spent Lithium Ion Batteries by a Hydrometallurgical Route,” Metals, vol. 7 no.10, pp.439, 2017
[77] Y. M. Park, H. Lim, J. H. Moon, H. N. Lee, S. H. Son, H. Kim, H. J. Kim, “High-Yield One-Pot Recovery and Characterization of Nanostructured Cobalt Oxalate from Spent Lithium-Ion Batteries and Successive Re-Synthesis of LiCoO2,” Metals, vol. 7 no. 8, pp.303, 2017
[78] L. Li, Y. Bian, X. X. Zhang, Y. Guan, E. Fan, F. Wu, R. Chen, “Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching,” Waste Management, vol. 71 no. 1, pp.362-371, 2018
[79] M. Debasish, H. I. Kim, C. W. Nam, K. H. Park, “Liquid–liquid extraction of aluminium(III) from mixed sulphate solutions using sodium salts of Cyanex 272 and D2EHPA” Separation and Purification Technology, vol. 56 no. 1, pp.311-318, 2007
[80] Z. H. Song, X. P. Han, Y. Deng, N. Zhao, W. Hu, C. Zhong, “Clarifying the Controversial Catalytic Performance of Co(OH)2 and Co3O4 for Oxygen Reduction/Evolution Reactions toward Efficient Zn–Air Batteries” ACS Appl. Mater. Interfaces, vol. 9 no. 27, pp.22694-22703, 2017
[81] S. A. Abbas, K. D. Jung, “Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior” Electrochimica Acta, vol. 193 no. 1, pp.145-153, 2016
[82] C. Li, S. X. Liu, “Preparation and Characterization of Ni(OH)2 and NiO Mesoporous Nanosheets” Journal of Nanomaterials, vol. 2012 no. 1, pp.648012, 2012
[83] B. Cheng, Y. Le, W. Q. Cai, J. G. Yu, “Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water” Journal of Hazardous Materials, vol. 185 no. 2-3, pp.889-897, 2011
[84] Y. Wang, Q. S. Zhu, H. G. Zhang, “Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process” Chemical Communication, vol. 41 no. 1, pp.5231-5233, 2005
[85] F. P. Larkins, P. J. Fensham, “Decomposition of Nickel Oxide” Nature, vol. 215 no. 5107, pp. 1268-1269, 1967
[86] T. N. Ramesh, “X-ray Diffraction Studies on the Thermal Decomposition Mechanism of Nickel Hydroxide” The Journal of Physical Chemistry B, vol. 113 no. 39, pp.13014-13017, 2009
[87] H. Dhaouadi, O. Ghodbane, F. Hosni, F. Touati, “Mn3O4 Nanoparticles: Synthesis, Characterization, and Dielectric Properties” Int. Sch. Res. Netw. ISRN Spectrosc., vol. 2012 no. 1, pp.1-8, 2012
[88] T. F. Peng, L. J. Xu, H. C. Chen, “Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue” Central European Journal of Chemistry, vol. 8 no. 5, pp.1059-1068, 2010
[89] G. L. Wang, Z. P. Ma, Y. Q. Fan, G. J. Shao, L. X. Kong, W. M. Gao, “Preparation of size-selective Mn3O4 hexagonal nanoplates with superior electrochemical properties for pseudocapacitors” Physical Chemistry Chemical Physics, vol. 17 no. 35, pp.23017-23025, 2015
[90] Z. Durmus, H. Kavas, A. Baykal, M. S. Toprak, “A green chemical route for the synthesis of Mn3O4 nanoparticles” Central European Journal of Chemistry, vol. 7 no. 3, pp.555-559, 2009
[91] R. M. A. Lieth, “Preparation and Crystal Growth of Materials with Layered Structures,” vol. 1, pp.95-96, 1977
[92] A. Seidell, W. F. Linke, “Solubilities of Inorganic and Organic Compounds: A Compilation of Solubility Data from the Periodical Literature,” vol. 1, pp.368-369, 1952
[93] J. F. Paulino, N. G. Busnardo, J. C. Afonso, “Recovery of valuable elements from spent Li-batteries,” Journal of Hazardous Materials, vol. 150 no. 3, pp.843-849, 2008
[94] M. Joulié, R. Laucournet, E. Billy, “Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries,” Journal of Power Sources, vol. 247 no. 1, pp.551-555, 2014