簡易檢索 / 詳目顯示

研究生: 林世挺
Lin, Shih-Ting
論文名稱: 熱老化對橡膠材料疲勞壽命之影響
Effects of Heat Deterioration to Fatigue Life for Rubber
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 75
中文關鍵詞: 老化橡膠疲勞壽命碳黑
外文關鍵詞: fatigue life, aging, rubber, carbon black
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   橡膠材料目前已廣泛地應用於許多工程領域,土木工程所使用之減震墊即為其中之一。橡膠減震墊承受反覆負載力作用,長時間使用下橡膠會因疲勞而產生裂縫,裂縫漸次延展將導致橡膠材料破壞,使得減震墊吸能效果大幅減弱。由於橡膠內微結構存在孔隙,該孔隙瑕疵於承受外力作用時,易因應力集中,使得微結構孔隙不斷衍生,最後成為肉眼可視的裂縫。碳黑為橡膠製造時常用的補強劑,本研究採用三種不同粒徑的碳黑,將三種橡膠試片置於高溫中,加速氧化進行並施作疲勞試驗,從試驗結果觀察老化對橡膠材質抗疲勞能力之影響,且可獲得橡膠疲勞之相關材料常數,以供後續研究橡膠裂紋成長機制之用。

    none

    摘要............................................................................................ Ⅰ 誌謝............................................................................................ Ⅱ 目錄............................................................................................ Ⅲ 表目錄........................................................................................ Ⅴ 圖目錄........................................................................................ Ⅵ 第一章 緒論................................................................................. 1 1.1研究動機與背景..................................................................... 1 1.2本文組織與內容..................................................................... 3 第二章 相關理論與文獻回顧..................................................... 4 2.1 橡膠材料簡介....................................................................... 6 2.1.1橡膠之基本性質.................................................................. 6 2.1.2橡膠材料熱老化後之材質變化.......................................... 7 2.2 橡膠裂縫成長機制.............................................................. 7 2.2.1能量釋放率與應變能密度之關係...................................... 7 2.2.2單軸拉伸下k值之分析...................................................... 9 2.3 疲勞破壞.............................................................................. 12 2.3.1疲勞沿革簡介....................................................................... 12 2.3.2橡膠材料之疲勞特性........................................................ 14 2.4碳黑補強劑簡介.................................................................... 15 2.4.1碳黑之聚集結構................................................................ 16 2.4.2命名原則............................................................................ 17 第三章 橡膠之單軸拉伸試驗.................................................... 29 3.1試體準備................................................................................ 29 3.2單軸拉伸試驗方法................................................................ 30 3.3單軸拉伸試驗結果................................................................. 30 第四章 橡膠之單軸疲勞試驗................................................... 53 4.1試驗器材............................................................................... 53 4.2試驗步驟............................................................................... 53 4.3橡膠之疲勞壽命計算法....................................................... 54 4.4試驗結果與討論................................................................... 56 第五章 結論.............................................................................. 70 參考文獻.................................................................................. 72

    [1] 張荻薇,“隔震技術在橋梁工程之應用”,結構工程,第四卷,第四期,pp.69-80,民國七十八年十二月。

    [2] J.M.Kelly and C.G.Koh, ”Effect of Axial Load on Elastomeric Isolation Bearings”, Report No. UBC/EERC-86/12, Earthquake Engineering Research Center , University of California Berkeley , 1987.

    [3] 李寶慶,“橋墩用防震膠墊片、設計與配方”, 防震橡膠加工技研討會 , 1991.

    [4] 周雄偉,“經紫外線照射後橡膠層墊之力學行為”,國立成功大學 土木工程研究所碩士論文,台南,2002。

    [5] 林永隆,“橡膠工業概論”,中央圖書出版社,台北,pp.19-20, 1977。

    [6] 郭文毅,“橡膠層墊經熱老化作用後力學行為之研究”,國立成功大學土木工程研究所碩士論文,台南,1998。

    [7] W.V.Mars and A.Fatemi, ” A literature survey on fatigue analysis approaches for rubber ” , International Journal of Fatigue 24, pp.949-961, 2002.

    [8] J.F.Roach ” Crack growth in elastomers under biaxial stresses. ” , Ph.D. Dissertation. USA: University of Akron; May 1982.

    [9] H.S.Rao ” Modeling and interpretation of fatigue failure initiation in rubber related to pneumatic tires. ” Ph.D. Dissertation. USA: Purdue University; 1989.

    [10] R.S.Rivlin and A.G. Thomas, Rupture of rubber. Part 1: characteristic energy for tearing.”, Journal of Polymer Science 10, pp. 291-318,1953.

    [11] H.W.Greensmith, ”Rupture of rubber. Part 10: the change in stored energy on making a small cut in a test piece held in simple extension.” Journal of Applied Polymer Science 7, pp. 993-1002, 1963.

    [12] P.B.Lindley,”Energy for crack growth in model rubber components”, J. Strain Anal. 7, pp. 132-140, 1972.

    [13] G.J.Lake, ”Application of Fracture Mechanics to Failure in Rubber Articles, with Particular Reference to Groove Cracking in Tyres”, Int. Conf. Yield, Deformation and Fracture of polymers, Cambridge. 1970.

    [14] P.L.Key, ”A relation between crack surface displacements and the strain energy release rate”, International Journal of Fracture Mechanics 5, pp.287-296, 1969.

    [15] 徐忠義,“泡沫鋁之疲勞行為”,國立成功大學 土木工程研究所碩士論文,台南,2001。

    [16] 黃嘉彥,”工程結構之疲勞與破壞 ”。1997/4,徐氏基金會。

    [17] M.F.Ashby and D.R.H.Jones, ”Engineering Materials”, 2nd Edition, Pergamon, 1980.

    [18] G.J.Lake and P.B.Lindey, ”The mechanical fatigue limit for rubber.” Journal of Applied Polymer Science 9, pp.1233-1251, 1965.

    [19] 鄭博仁,添加碳黑對碳/碳複合材料機械及磨耗性質之影響”,國立成功大學材料科學及工程研究所碩士論文,台南,2000。

    [20] D.T.Norman, ”Rubber Grade Carbon Blacks”, Manager, Product Development Witco Corporation, Concarb Division Houston, Texas.

    [21] ”Carbon Black User’s Guide”, The International Carbon Black Association Publication, 2004.

    [22] ASTM D24, Committee on Carbon Black, 1968.

    [23] ASTM D412, Tensile Tests of Rubber.

    [24] CNS3553 硫化橡膠拉伸試驗法,經濟部中央標準局,民國85年。

    [25] ASTM D573-81, Standard Test Method for RUBBER-Deterioration in an air oven.

    [26] A.G.Thomas , D.Stinson and C.L.M.Bell, ”Measurement of tensile strength of natural rubber vulcanizates at elevated temperature”, Rubber Chemistry and Technology, Volume 55, pp.161, 1982.

    [27] ASTM D4482-99, Standard Test Method for RUBBER Property-Extension Cycling Fatigue

    [28] I.S.Choi and C.M.Roland, ’’Intrinsic defects and the failure properties of cis-1,4-POLYISOPRENES’’, Rubber Chemistry and Technology,
    Volume 69, pp.591-599, 1996.

    下載圖示 校內:立即公開
    校外:2005-07-15公開
    QR CODE