| 研究生: |
鄭茂川 Zheng, Mao-Chuan |
|---|---|
| 論文名稱: |
使用準分子雷射於鑽石膜的平坦化研究 Planarization study of diamond films using excimer laser technology |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 222 |
| 中文關鍵詞: | 準分子雷射 、鑽石膜 、平坦化 、拋光 |
| 外文關鍵詞: | excimer laser, diamond film, planarization, polishing |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑽石因為具有硬度最大、散熱最快、透光範圍廣和耐腐蝕等特性,長久以來一直是工程上重要的材料之一。而發明使用化學氣相沉積法(chemical vapor deposition, CVD)鍍製的多晶鑽石膜亦保有和天然單晶鑽石差不多的特性,也開始被大量生產打算廣為使用。然而因為熱燈絲法(hot filament method)鍍製的CVD鑽石膜,其表面相當粗糙,這將限制鑽石膜的使用範圍,而無法順利將其許多獨特的材料特性發揮出來。有鑑於此,陸續開發鑽石膜的平坦化技術,希望能降低鑽石膜表面的粗糙度。在這些平坦化技術當中,以準分子雷射拋光是最具潛力的技術,因為它有著快速且有效的優點。於是本論文即以KrF準分子雷射當作平坦化鑽石膜的工具,配合不同的雷射能量及掃描次數,探討鑽石膜經雷射照射加工前後的表面粗糙度變化結果和表面非均勻度變化結果優劣,整理歸納將作為對大面積鑽石膜試片加工的參考依據。另外,建立雷射導致表面溫升理論,預測在不同的雷射能量照射和加工方式下將產生的表面溫度值,並由鑽石材料在此高溫中將發生的反應來瞭解雷射燒蝕破壞鑽石膜的機制。得知鑽石材料在1500K會先發生石墨化反應而轉變為石墨結構,石墨在超過4000K高溫的環境中會直接昇華,最後達到雷射燒蝕破壞鑽石膜的反應。同時,建立單發雷射燒蝕鑽石膜的平均材料移除率理論並配合實驗結果驗証,得到從1.8J/cm2~3.0J/cm2的雷射能量密度下,其平均移除率分別約為2.2nm/pulse~23nm/pulse,這樣的微小移除量使得KrF準分子雷射很適合對鑽石膜進行微細加工,並由移除率的預測將可控制雷射燒蝕鑽石膜的量。
在進行雷射燒蝕鑽石膜實驗的前後,須對鑽石膜作各種檢測分析。本實驗中利用了X光繞射儀、拉曼光譜儀、掃描式電子顯微鏡、原子力顯微鏡和三維粗度儀等設備來記錄並比較這些試片在加工前後的材料特性結果。
由實驗結果得知,在低雷射能量密度時不論加工時間長短,所得的加工效果較穩定。反倒是在高雷射能量照射下,雖然有較高的材料移除量,但容易因加工時間過長,而破壞待加工區域的表面平整,造成粗糙度的增加。也因為雷射加工是屬於非接觸式的加工,所以待加工表面經雷射燒蝕前後的翹曲趨勢是差不多的,這也意味著在這燒蝕區域上各點的雷射燒蝕量是相同的。而因為雷射加工是平坦化鑽石膜的粗加工技術,故在被照射過的鑽石膜上存在一層約為6~116nm厚的石墨。這個值可由理論結果得到,並由Raman光譜結果獲得初步驗証。
Diamond film is one of the most important materials in engineering by its properties of the largest hardness, fast speed of thermal conduction, broad range of optical transmitivity and corrosion proof. Polycrystal diamond films deposited by CVD (chemical vapor deposition) method also have the same properties of natural singlecrystal diamonds, being manufactured for the large amount applications. Because the diamond films deposited by hot filament CVD have very rough surface, this will limit its applications for the special properties. That’s the reason of creating new planarization techniques, in order to minimize the surface roughness. In these planarization techniques, excimer laser of the most potential one with its advantage for fast and efficient. In this study we use KrF excimer laser as the tool for polishing diamond films with different laser energies and scanning numbers, thus we have the results of surface roughness and nonuniformity variation due to the original surfaces and laser irradiated surfaces and among the results we can choose the appropriate machining parameters for polishing large area diamond films. On the other hand, with the laser induced surface temperature rise model, we can understand the mechanisms of laser ablation on diamond films at high temperatures by predicting the surface temperatures generated at different laser energies. Knowing that diamond will first transform into graphite at 1500K as the graphitization and subsequent the graphite will sublimate at 4000K, thus achieving laser ablation of diamond films. At the same time we propose the average material removal rate by single laser pulse and conducted it by experimental results, then obtain the average removal rate about 2.2nm/pulse~23nm/pulse at laser fluence 1.8J/cm2~3.0J/cm2. The small removal rate makes KrF excimer laser very appropriate in micromachining of diamond films and controls the laser ablation amount of diamond films by predicting removal rate.
Before processing laser ablation experiments we have several properties testing analyses. In this experiment XRD, Raman spectroscopy, SEM, AFM and 3D stylus profilometry are involved to record and compare the results from before and after the experiment datas.
From the results, at low laser fluence we can obtain the steady machining effects no matter how long the machining time is. On the other hand, higher laser fluence irradiation can induced higher removal rate, it will destroy the machined surface flatness and increase surface roughness by much longer machining time. Also because laser machining is a non-contact technique, the surface nonuniformity remains the same when before and after laser ablation, meaning that every point on the irradiated area has the same ablation amount. Taking laser machining diamond films as the rough technique it would product a thin 6~116nm graphite layer on diamond films, this theoretical thickness can be first examined by Raman spectroscopy results.
1. 宋健民,”鑽石合成”,全華科技圖書股份有限公司,民國89年.
2. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes:
properties, processing and application, Noyes Publications, 1993.
3. 張瑞發,化工資訊, Vol. 4, 1993, 68.
4. J. Wilks, E. Wilks, Properties and Applications of Diamonds,
Butterworth-Heinemann, 1991.
5. A.P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem, Diamond Relat.
Mater. 8 (1998) 1198.
6. E. Bruton, Diamond Technology, NAG, London, 1953.
7. P. Grodzinski, Diamond Technology, NAG, London, 1953.
8. M.Yoshikawa, Diamond Optics III , SPIE 1325 (1990) 210.
9. G.S. Raju, Chemical assisted mechanical polishing and planarization of
CVD diamond substrates for MCM application, M.S.E.E. Thesis,
University of Arkansas Library Fayetterille, AR, 1994.
10. C.Vivensang, L. Ferlazzo-Manin, M.F. Raret, G, Turban, F. Rousseaux,
A. Gicqnel, Diamond Relat. Mater. 5 (1996) 840.
11. H. Funamoto, O. Koseki, Surface Coat. Technol. 47 (1991) 474.
12. G.S. Sandu, W.K. Chu, Appl. Phys. Lett. 55 (5) (1989) 437.
13. M. Harish, D.M. Bothel, Diamond Optics V, SPIE 1759 (1992) 97.
14. Z. Feng, Y. Tzeng, J.E. Field, Thin Solid Films, 212 (1992) 35.
15. M. Rothschild, C. Arnone, D.J. Ehrlich, J. Vac. Sci. Technol. B 4 (1)
(1986) 310.
16. V.G. Ralchenko, S.M. Pimenov, Handbook of Industrical Diamonds and
Diamond Films, ed. By M.A. Prelas, G. Popovici, L.K. Bigelow,
Marcel Dekker Inc., New York (1997) 984.
17. A. Blatter, U. Bogli, L.L. Builov, N.I. Chapliev, V.I. Konov, S.M.
Pimenov, B.V. Spitsyn, Proc. Electrochem. Soc. 91 (8) (1991) 357.
18. U. Bogli, A. Blatter, S.M. Pimenov, A.A. Smolin, V.I. Konov, Diamond
Relat. Mater. 1 (1992) 782.
19. S.M. Pimenov, A.A. Smolin, V.G. Ralchenko, V.I. Konov, S.V.
Likhanski, I.A. Veselovski, G.A. Sokolina, S.V. Bantsekov, B.V.
Spitsyn, Diamond Relat. Mater. 2 (2) (1993) 4.
20. V.P. Ageev, V.Y. Armeyev, N.I. Chapliev, A.V. Kuzmichor, S.M.
Pimenov, V.G. Ralchenko, Mater. Manufactur. Process. 8 (1) (1993) 1.
21. K.V. Ravi, V.G. Zarifis, Laser polishing of diamond, Proceeding 3rd
International Symposium on Diamond Materials, Honolulu, Hawaii,
The Electrochemical Society, Pennington, NJ, 1993.
22. V.N. Tokarev, J.I.B. Wilson, M.G. Jubber, P. John, D.K. Milne,
Diamond Relat. Mater. 4 (1995) 169.
23. V.G. Ralchenko, K.G. Korotushenko, A.A. Smolin, E.N. Loubnin,
Diamond Relat. Mater. 4 (1995) 893.
24. R. Singh, D.G. Lee, J. Electron. Mater. 25 (1996) 137.
25. A.M. Ozkan, A.P. Malshe, W.D. Brown, Diamond Relat. Mater. 6
(1997) 1789.
26. S. Gloor, S.M. Pimenov, E.D. Obraztsova, W. Luthy, H.P. Weber,
Diamond Relat. Mater. 7 (1998) 607.
27. S. Gloor, W. Luthy, H.P. Weber, S.M. Pimenov, V.G. Ralchenko, V.I.
Konov, A.V. Khomich, Applied Surface Science 138-139 (1999) 135.
28. V.I. Konov, S.M. Pimenov, V.V. Kononenko, V.G. Ralchenko, S. Gloor,
W. Luthy, H.P. Weber, A.V. Khomich, Appl. Phys. A 69 (1999) 81.
29. A. Beiser, Concepts of Modern Physics, 5th ed., McGraw-Hill, 1995.
30. 林螢光,”光電子學-原理,元件與應用”,全華科技圖書股份有限公司,
民國89年.
31. K.J. Gasvik, Optical Metrology, 2nd ed., John Wiley& Sons, 1995.
32. J. Brannon, Excimer Laser Ablation and Etching, the American Vacuum
Society, 1993.
33. B. Hitz, J.J. Ewing, J. Hecht, Introduction to Laser Technology, 3rd ed.,
IEEE Press, 1994.
34. D. Bauerle, Laser Processing and Chemistry, 3rd ed., Springer-Verlag
Berlin Heidelberg, 2000.
35. 李俊昌,”激光的衍射及熱作用計算”,科學出版社,北京,2002.
36. G. Davies ed., Properties and Growth of Diamond, the Institution of
Electrical Engineers, 1994.
37. R. Windholz, P.A. Molian, Journal of Materials Science 32 (1997)
4295.
38. R. Windholz, P.A. Molian, Journal of Materials Science 33 (1998)523.
39. B.E.A. Saleh, M.C. Teich, Fundamental of Photonics, John Wiley &
Sons, 1991.
40. 莊達人,”VLSI製造技術”,高立圖書有限公司,民國89年.
41. A. Letting ton, J.W. Steeds ed., Thin Film Diamond, Chapman & Hall
for The Royal Society, 1994.
42. L. Junchang, C. Langlade, A.B. Vannes, Surface and Coat. Technol. 115
(1999) 87.
43. H.S. Craslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd ed., 1959.
44. Z.B. Hou, R. Komanduri, International Journal of Heat and Mass
Transfer 43 (2002) 1679.
45. W.D. Callister, Materials Science and Engineering an Introduction 4th
ed., John Wiley & Sons, 1997.
46. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mess Transfer,
4th ed., John Wiley & Sons, 1996.
47. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 行政院國家科學
委員會精密儀器發展中心, 民圖82年.
48. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H.
Soliman, Journal of Materials Processing Technology 123 (2002) 133.
49. J.D. Faires, R. Burden, Numerical Methods 7th ed., Books/Cole,1998.
50. R.L. Burden, J.D. Faries, Numerical Analysis 7th ed., Books/Cole,2001
51. 鄭仲豪, 應用相位移陰影疊紋量測高溫下晶圓的變形, 國立成功大
學機研所, 碩士論文, (2002).