簡易檢索 / 詳目顯示

研究生: 蘇詩媛
Su, Shih-yuan
論文名稱: 應用MEMS熱膜感測器探討不同邊界條件下矩形截面凸狀物非定常回覆再接觸現象
Experimental study on the unsteady characteristics of flow reattachment at different boundary conditions using MEMS sensors
指導教授: 苗君易
Miau, J. J.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 三維非定常回覆再接觸
外文關鍵詞: reattachment, three-dimensional, unsteady
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的目的是在探討矩形截面凸狀物在不同邊界條件下,回覆再接觸非定常之現象,實驗分別進行在雷諾數分別為2.54×104及5.09×104,使用之模型寬高比為4,且將模型置於距入口端X’= 10H及16H處,其中H為模型之高。再者將在模型前端放置砂網以增加流場之紊流強度,觀察回覆再接觸長度之變化。
    實驗方法將利用Thermal tuft-MEMS熱膜感測器量測回覆再接觸區及使用熱線測速儀搭配熱膜感測器之相關性延遲分析了解手指結構之大小。同時使用套裝軟體FLUENT映證回覆再接觸區之準確性。實驗結果得知在兩個不同雷諾數及不同位置下,模型中央回覆再接觸區發生在X = 3H處,此結果與模擬結果十分接近,而模型兩側回覆再接觸區因受側向邊界及黏滯力之影響,回覆再接觸區相對較中央區域短。當流場紊流強度增強時,中央回覆再接觸區縮短至X = 1.6H及1.5H處,表示回覆再接觸區明顯受流場擾動而變化。在此情形下,透過熱線測速儀所量測之W速度分量得知,流場中央區域之速度分量往左右兩測偏移,因此模型之中央回覆再接觸長度短於兩側回覆再接觸長度,並且證實回覆再接觸現象之三維特性。此外藉由延遲相關性分析可知,手指結構大小為0.5H,當流場紊流強度增強時,手指結構縮小為0.3H。
    由熱絲測速儀得知回覆再接觸非定常之特徵,當S4受到S3傳來的熱造成電壓值下降,反之S2電壓值上升,MEMS訊號值呈現明顯之反相位,同時也可發現熱線測速儀之U速度分量明顯下降、V速度分量呈上升趨勢而W速度分量不穩定擺動,由此可得知在非定常現象出現時,手指結構運動是脫離模型表面且左右來回擺動,熱線測速儀與MEMS熱膜感測器存在如此的關係,因此得知此回覆再接觸現象存在三維非定常之特徵。

    The purpose of the research is to investigate the unsteady, three-dimensional behaviors of flow reattachment over a surface-mounted rectangular block under different boundary conditions. The aspect ratio of the rectangular block model, i. e., its width versus height (H), was 4. The model was located at 10H and 16H downstream from the inlet of the test section, respectively. Experiments were made for the Reynolds numbers at 2.54×104 and 5.09×104, with and without the incoming boundary layer roughened by a screen installed immediately upstream of the model.
    The region of flow reattachment was clearly identified by the self-made thermal tuft MEMS sensors applied on the surface of the model. In addition, the phenomenon of flow separation and reattachment around the model was successfully simulated by a CFD method. Results show that the reattachment length at the centerline of the model is around 3H at the two different Reynolds numbers studied, irrespective of the locations of the model from the inlet. Similar results were obtained by the two-dimensional CFD analysis. On the other hand, it is noted that the large-scale 3-D flow at the junctions of the sidewalls and the model caused the reattachment lengths near the two sidewalls substantially shorter than that at the centerline of the model. In the case of the incoming boundary layer roughened by a screen upstream, the reattachment length was found significantly shortened, in a way that the reattachment length at the centerline of the model appeared to be shorter than those near the two sidewalls.
    Cross-correlation analysis of the signals of the MEMS sensors and X-type hot-wire was performed to study the three-dimensional flow structures embedded in the flow reattachment region. As found, the characteristic spanwise lengths of the three-dimensional flow structures are about 0.5H and 0.3H, respectively, for the incoming boundary layers without and with roughened by a screen upstream of the model. It is further noted that the unsteady behaviors of flow reattachment were featured with the intermittent events remarkably noted in the streamwise (U) and vertical (V) velocity traces. Namely, at the moments when U gets decreased appreciably, V very likely appears positive and at high value. These events are attributed to the presence of unsteady, three-dimensional flow structures, which conceivably induce strong momentum mixing in the flow reattachment region and cause the reattachment length shortened substantially.

    摘要 I Abstract III 致謝 V 表目錄 VIII 圖目錄 IX 符號說明 XIV 第一章 序論 1 1-1研究目的 1 1-2雷射熱絲感測器(Laser thermal tuft)相關文獻 2 1-3 回覆再接觸相關文獻 3 1-4 MEMS相關文獻 6 1-5 數值模擬文獻回顧 11 第二章 理論基礎 12 2-1 MEMS原理 12 2-2 MEMS感測器製程 13 2-3 數值模擬原理 14 2-3-1 統御方程式(Governing Equation) 15 第三章 研究方法 17 3-1 實驗方法 17 3-2 風洞流場品質 18 3-3熱膜感測器與熱線測速儀之相關性分析 19 3-4數值模擬計算 21 3-4-1 感測器數值計算分析 21 3-4-2 回覆再接觸現象數值模擬分析 23 第四章 結果與討論 24 4-1 回覆再接觸現象探討 24 4-1-1 模型前緣位於X’ = 10H回覆再接觸現象實驗結果 25 4-1-2 模型前緣位於X’ = 16H回覆再接觸現象實驗結果 25 4-1-3 加置砂網回覆再接觸現象實驗結果 26 4-2 回覆再接觸三維性現象 26 4-2-1 模型前緣位於X’ = 10H回覆再接觸三維性現象實驗結果 27 4-2-2 模型前緣位於X’ = 16H回覆再接觸三維性現象實驗結果 28 4-3 回覆再接觸現象非定常特性 29 4-4 延遲相關性之手指結構分析 30 4-4-1熱線測速儀與熱膜感測器之相關性分析 30 4-4-2模型前加置砂網之熱線測速儀與熱膜感測器之相關性分析 31 4-5 感測器模擬結果 32 4-6 感測器模擬之網格獨立性分析 33 4-7 回覆再接觸現象模擬結果 34 第五章 結論與未來建議 35 5-1 結論 35 5-2 未來工作與建議 36 參考文獻 37 圖表彙整 43

    【1】Bellhouse, B. J., and Schultz, D. L., “Determination of mean and dynamic skin friction, separation and transition in low-speed flow with a thin-film heated element”, Journal of Fluid Mechanics, Vol. 24, Part 2, 1965, pp. 379-400.
    【2】Moen, M. J., andSchneider, S. P., “Effect of sensor size on the performance of flush-mounted hot-film sensors”, Journal of Fluids Engineering, Transactions of the ASME, Vol. 116, No. 2, 1994, pp. 273-277.
    【3】Lee, T., and Basu, S., “Measurement of unsteady boundary layer developed on an oscillating airfoil using multiple hot-film sensors”, Experiments in Fluids, Vol. 25, 1998, pp.108-117.
    【4】Menendez, A.N., and Ramaprian, B. R., “The use of flush-mounted hot-film gauges to measure skin friction in unsteady boundary layers”, Journal of Fluid Mechanics, Vol. 161, 1985, pp. 139-159
    【5】曹榮峻,”應用MEMS熱膜感測與液晶視流探討舉行潔面凸狀物之回覆再接觸現象”, 成功大學航空太空工程所碩士論文, 2006.
    【6】Hunt, E. M., and Pantoya, M. L., “A laser induced diagnostic technique for velocity measurements using liquid crystal thermography”, International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 4285–4292.
    【7】Smith, J. S., Baughn, J. W., and Byerley, A.R.,” Surface flow visualization using thermal tufts produced by an encapsulated phase change material”, International Journal of Heat and Fluid Flow, Vol. 26,2005, pp. 411–415.
    【8】Olson, S. D., and Thomas, F. O., “Quantitative detection of turbulent reattachment using a surface mounted hot-film array”, Experiments in Fluids, Vol. 37, 2004, pp. 75–79.
    【9】Kim, K. C., Ji, and H. S., Seong, S. H., “Flow structure around a 3-D rectangular prism in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, 2003, pp. 653–669.
    【10】Eston, J. K., and Johnstin, J. P., “A Review of Research on Subsonic Turbulent Flow Reattachment”, AIAA Journal, Vol. 19, No.9, 1981, pp.1093-1100.
    【11】Djilali, N., ‘‘Forced Laminar Convection in an Array of Stacked Plates,’’ Numerical Heat Transfer, Part A 25, 1994, pp. 393–408
    【12】 Yaghoubi, M., and Mahmoodi, S.,” Experimental study of turbulent separated and reattached flow over a finite blunt plate”,, Experimental Thermal and Fluid Science, Vol. 29, 2004, pp.105–112.
    【13】 Yanaoka, H., Yoshikawa, H., and Ota, T., “Numerical Simulation of Laminar Flow and Heat Transfer Over a Blunt Flat Plate in Square Channel”, Transactions of the ASME, Vol. 124, 2002, pp.8-16.
    【14】Song S., and Eaton, J. K.,” Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery “, Experiments in Fluids, Vol. 36, 2004, pp. 246–258.
    【15】Cheng, T. S., and Yang, W. J., “Numerical simulation of three-dimensional turbulent separated and reattaching flows using a modified turbulence model”, Computers and Fluids, Vol. 37, No. 3, 2008, pp. 194-206.
    【16】Abu-Mulaweh, H. I., ”Turbulent mixed convection flow over a forward-facing step—the effect of step heights”, International Journal of Thermal Sciences, Vol. 44, 2005, pp. 155–162.
    【17】Adams, E. W., and Johnston, J. P., “Effects of the separating shear layer on the reattachment flow structure Part 2: Reattachment length and wall shear stress”, Experiments in Fluids, Vol. 6, 1988, pp. 493-499.
    【18】Chou, J. H., Chao, S. Y., “Branching of a horseshoe vortex around surface-mounted rectangular cylinders”, Experiments in Fluids, Vol. 28, 2000, pp. 394-402.
    【19】Yang, Z., and Abdalla, I. E.,” Effects of free-stream turbulence on large-scale coherent structures of separated boundary layer transition”, International Journal for Numerical Methods in Fluids, Vol. 49, 2005, pp. 331–348.
    【20】Chen, Y. M., and Wang, K. C., “Simulation and measurement of turbulent heat transfer in channel with a surface-mounted rectangular heated block”, Heat and Mass Transfer, Vol. 31, 1996, pp. 463-473.
    【21】Wang, K. C., and Chen, W. R., “An Experimental Investigation of the Turbulence Structure of a Block-Mounted Rectangular Channel Flow”, Journal of Science and Engineering Technology, Vol. 2, No. 3, 2006, pp. 9-20.
    【22】Suksangpanomrung, A., Djilali, N., and Moinat, P., “Large-eddy simulation of separated flow over a bluff rectangular plate”, International Journal of Heat and Fluid Flow, Vol. 21, 2000, pp. 655-663.
    【23】Iwai, H., Nakabe, K., and Suzuki, K., “Flow and heat transfer characteristics of backward-facing step laminar Flow in a rectangular duct”, International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 457-471.
    【24】Brown, S. B., Arsdell, W. V., and Muhlstein, C.L.,” Materials Reliability in MEMS Devices”, IEEE, 1997, pp.591-593.
    【25】Desgeorges, O., Lee, T., and Kafyeke, F., “Multiple hot-film sensor array calibration and skin friction measurement”, Experiment in Fluid, Vol. 32, 2002, pp. 32-43.
    【26】Appukuttan, A., Shyy, W., Sheplak, M., and Cattafesta, L.,” Mixed Convection Induced by MEMS-BASED Thermal Shear Stress Sensor”, Numerical Heat Transfer, Vol. 43, Part A, 2003, pp. 283–305.
    【27】Chao, J., Shyy, W., Thakur, S., Sheplak, M., and Mei, R.” Effect of Conjugate Heat Transfer on MEMS-BASED Thermal Shear Stress Sensor”, Numerical Heat Transfer, Vol. 48, Part A, 2005, pp. 197–217.
    【28】Park, S., Kim, S., Kim, S., and Kim, Y.” A flow direction sensor fabricated using MEMS technology and its simple interface circuit”, Sensors and Actuators B: Chemical, Vol. 91,2003, pp.347–352.
    【29】De Moor, P., Witvrouw, A., Simons, V., and De Wolf, I., ” The Fabrication and Reliability Testing of Ti/TiN Heaters”, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3874, 1999, pp.284-293.
    【30】Fingerson L. M. and Goldstein R. J., “Thermal Anemometers in Fluid Mechanics Measurements”, Hemisphere, New York, 1983, pp. 99-154, 1983.
    【31】Mailly, F., Giani, A., Bonnot, R., Temple-Boyer, P., Pascal-Delannoy, F., Foucaran, A., and Boyer, A., “ Anemometer with hot platinum thin film”, Sensor and Actuators A, Vol. 94, 2001, pp. 32-38.
    【32】Adams, E. W., and Johnston, J. P., “Effects of the separating shear layer on the reattachment flow structure Part 1: Pressure and turbulence quantities”, Experiments in Fluids, Vol. 6, 1988, pp. 400-408.
    【33】Bradshaw, P. and F. Wong, F. Y. “The reattachment and relaxation of a turbulent shear layer”, Journal of Fluid Mechanical, part 1, Vol. 52 1972, pp. 113-135.
    【34】Adams, E. W., and Johnston, J. P., “Effects of the separating shear layer on the reattachment flow structure Part 2: Reattachment length and wall shear stress”, Experiments in Fluids, Vol. 6, 1988, pp. 493-499.
    【35】Patel, R. P., “ Effects of stream turbulence on free shear flows,” Aeronautical Quarterly, Vol. 29, Part 1, 1978, pp. 1-17.
    【36】Patanker S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., 1980.
    【37】Wang, G.., Stone, K., and Vanka S.P., “Unsteady heat transfer in baffled channel”, Journal of heat transfer, Vol. 118, 1996, pp. 585-591.
    【38】Valencia, A., Martin, J.S., and Gormaz, R., “Numerical study of the unsteady flow and heat transfer in channel with periodically mounted square bars”, Heat and Mass Transfer, Vol. 37, 2001, pp. 265-270.
    【39】Lee, G. B., Wu, J. H., Miau, J. J., “ A New Fabrication Process for a Flexible Skin with Temperature Sensor Array”, Journal of the Chinese Institute of Engineers, Vol. 25, No. 6, 2002, pp. 619-625.
    【40】Jiang, F., Lee, G. B., Tai, Y. C., Ho, C. M., “ A Flexible Micromachine-Based Shear-stress Sensor Array and Its Application to Separation-Point Detection”, Sensors and Actuators A: Physical, Vol. 79, 2002, pp. 194-203.
    【41】杜榮國, “ MEMS熱膜感測器設計製造及應用於探討非定常流動分離現象”, 成功大學航空太空工程所碩士論文, 2003.
    【42】Fluent 6.2 User’s Manual, Fluent Inc., 2004.
    【43】Shen, W. Z., Michelsen, J. A., Sørensen , N. N., and Sørensen, J.N. “An Improved SIMPLEC Method on Collocated Grids for Steady and Unsteady Flow Computations”, Numerical Heat Transfer, Part B, Vol. 43, 2003, pp.221–239.
    【44】Bali, T., “Modeling of Heat Transfer and Fluid Flow for Decaying Swirl Flow in A Circular Pipe”, International Communications in Heat and Mass Transfer, Vol. 25, Issue 3, 1998, pp.349-358.
    【45】Hsieh, W. D., and Chang, K. C., “Turbulent flow calculation with orthodox QUICK scheme”, Numerical Heat Transfer; Part A: Applications, Vol. 30, No. 6, 1996, pp. 589-604.
    【46】 Sohankar, A., Norberg, C., Davidson, L., ” Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69, 1997, pp. 189-201.
    【47】Iwai. H., NaKabe. K., Suzuki. K., “ Flow and heat transfer characteristic of backward-facing step laminar flow in rectangular duct “, Int. J. of heat and mass transfer, Vol.43, pp.457-471, 2000.
    【48】Armaly, B .F., Durst, F. Pereira, J. C. F., and Schonung, B., “ Experimental and theoretical of backward-ward step flow ”, Journal of Fluid Mechanics, Vol. 127,1983, pp. 473-496.

    下載圖示 校內:立即公開
    校外:2008-07-29公開
    QR CODE