| 研究生: |
王萍嫻 Wang, Ping-Hsien |
|---|---|
| 論文名稱: |
探討癌症治療引起心臟功能障礙的機轉及治療策略 Exploring the mechanism and the therapeutic strategies of cancer therapy related cardiac dysfunction |
| 指導教授: |
葉明龍
Yeh, Ming-Long 劉嚴文 Liu, Yen-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 人類誘導多能幹細胞(hiPSCs) 、人類誘導多能幹細胞衍生的心肌細胞(hiPSC-CMs) 、癌症治療 、心臟衰竭 、Valsartan/sacubitril(ARNI) |
| 外文關鍵詞: | hiPSC, hiPSC-CMs, cancer therapy, heart failure, valsartan/sacubitril (ARNI) |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於化療藥物的發展、癌細胞藥物的普遍應用及其功效,癌症患者的存活率已大幅提升。有效的抗癌藥物已被證實會引起心肌病。而人類心肌細胞的獲取途徑有限,導致人們對癌症治療期間或之後引起心臟毒性治療所進行的研究產生了不同的觀點。從基礎研究的角度,缺乏收縮生理特徵的心肌細胞係不被視為「真正的」心肌細胞。囓齒類動物具有與人類不同的獨特晝夜節律特徵,從動物組織培養取得的細胞訊號路徑可能與人類細胞的訊號路徑並不完全相似。研究真正的人類心肌細胞面臨一些挑戰,例如侵入性操作和由於其高度分化的性質而導致的有限的增殖潛力。人類誘導多能幹細胞發育成心肌細胞在本研究中通過細胞收縮能力評估及生理電訊號測試,證實可望增強在學術領域當作實驗平台的功效。化療藥物Doxorubicin (Dox)以拓樸異構酶II為靶點來阻止癌細胞增殖,但會導致劑量依賴性心肌病變。Valsartan/sacubitril (ARNI)在心臟衰竭治療中的臨床應用基於Sacubitril活性代謝物抑制腦啡肽酶的機制,從而促進鈉和水的排泄,減輕血管收縮,避免不適當的心臟重塑。先前的許多研究已經證實,Dox引起的心臟毒性是由於活性氧(ROS)產生過多,導致粒線體損傷,造成體內代謝異常引發一系列下游細胞凋亡事件。 動物實驗結果證實Dox會引起心臟收縮功能異常,口服ARNI比Valsartan明顯提高小鼠的心臟功能並能提高存活率。應用已經建立好的人類誘導多能幹細胞來源的心肌細胞(hiPSC-CMs)作為藥物篩選平台來驗證動物實驗結果並探索心臟衰竭治療藥物背後的機制發現,給予添加ARNI組別的細胞,顯著降低了Dox引起的心臟毒性並提高了心肌細胞的存活率。此機制涉及了心肌細胞內質網中的細胞色素P450酶CYP26家族,ARNI有助於消除細胞內的ROS、減少Dox引起的內質網氧化壓力,進而增加蛋白質合成率,並會刺激TNFAIP8的表達,從而阻止細胞凋亡途徑的活化。本研究證實了Dox產生的ROS最初會對內質網造成損害、抑制心肌細胞內TNFAIP8的表現並活化細胞凋亡路徑。 ARNI作為心臟衰竭的一線臨床治療藥物其背後的機制可能涉減輕Dox誘導的內質網氧化壓力。
The survival rate of individuals with cancer has been substantially enhanced due to developments in chemotherapy drugs, the universal application of cancer cell medicines, and their efficacy. Effective anticancer drugs have been proven to cause cardiomyopathy, and the limited access to human cardiomyocytes has resulted in a significant focus of research on the cardiac toxicity induced during or after cancer treatment, leading to differing perspectives on therapy. From a basic research perspective, cardiac myocyte cell lines without contractile physiological characteristics are not classified as authentic cardiomyocytes. Rodents have unique circadian characteristics distinct from humans, and the signaling pathways in primary cultures may not be entirely similar to those in human cells. Studying true human cardiomyocytes poses several challenges, such as invasive procedures and limited proliferation potential resulting from their highly differentiated nature. In this study, human induced pluripotent stem cells (hiPSCs) were differentiated into cardiomyocytes and were evaluated through their contraction ability and physiological electrical signal testing. It was confirmed that these cells could potentially enhance their effectiveness as an experimental platform in academic research. The chemotherapy drug doxorubicin (Dox) targets topoisomerase II to inhibit the proliferation of cancer cells, but it leads to dose-dependent cardiomyopathy. The clinical application of Valsartan/sacubitril (ARNI) in heart failure treatment is based on the mechanism by which the active metabolite of Sacubitril inhibits neprilysin, thereby promoting sodium and water excretion, reducing vasoconstriction, and preventing inappropriate cardiac remodeling. Numerous previous studies have confirmed that Dox-induced cardiotoxicity is due to the excessive production of reactive oxygen species (ROS), leading to mitochondrial damage, which triggers a series of downstream apoptotic events due to metabolic abnormalities in the body. Animal experiments confirmed that Dox-induces cardiac contractile dysfunction, and oral ARNI significantly improved heart function and survival rates in mice compared to Valsartan. Using cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) as a drug screening platform to validate the animal experiment results and explore the mechanisms behind heart failure treatments, it was found that the addition of ARNI significantly reduced Dox-induced cardiotoxicity and improved the survival rate of cardiomyocytes. This mechanism involves the cytochrome P450 enzyme CYP26 family in the endoplasmic reticulum, which helps eliminate intracellular ROS, reduces Dox-induced oxidative stress in the endoplasmic reticulum, increases protein synthesis rates, and stimulates the expression of TNFAIP8, thereby preventing the activation of apoptotic pathways. This study suggests that Dox-induced ROS initially causes damage to the endoplasmic reticulum, and ARNI, as a first-line clinical treatment for heart failure, may mitigate Dox-induced oxidative stress in the endoplasmic reticulum.
1. Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, Freddie Bray. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
2. Ahmedin Jemal, Michael J Thun, Lynn A G Ries, Holly L Howe, Hannah K Weir, Melissa M Center, Elizabeth Ward, Xiao-Cheng Wu, Christie Eheman, Robert Anderson, Umed A Ajani, Betsy Kohler, Brenda K Edwards. Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst, 2008. 100(23): p. 1672-94.
3. Saini, K.S. and C. Twelves. Determining lines of therapy in patients with solid cancers: a proposed new systematic and comprehensive framework. Br J Cancer, 2021. 125(2): p. 155-163.
4. Usborne, C.M. and A.P. Mullard. A review of systemic anticancer therapy in disease palliation. British Medical Bulletin, 2017. 125(1): p. 43-53.
5. James W. Opzoomer, Dominika Sosnowska, Joanne E. Anstee, James F. Spicer, and James N. Arnold. Cytotoxic chemotherapy: clinical aspects. Medicine, 2016. 44(1): p. 25-29.
6. Ke, X. and L. Shen. Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine, 2017. 1(2): p. 69-75.
7. Lei Zhong, Yueshan Li, Liang Xiong, Wenjing Wang, Ming Wu, Ting Yuan, Wei Yang, Chenyu Tian, Zhuang Miao, Tianqi Wang, Shengyong Yang. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther, 2021. 6(1): p. 201.
8. Apostolia-Maria Tsimberidou. Targeted therapy in cancer. Cancer Chemother Pharmacol, 2015. 76(6): p. 1113-32.
9. Godefridus J Peters. Targeted Therapy. Anticancer Res, 2019. 39(7): p. 3341-3345.
10. Waldman, A.D., J.M. Fritz, and M.J. Lenardo. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol, 2020. 20(11): p. 651-668.
11. Keefe, D.M.K. and E.H. Bateman. Potential Successes and Challenges of Targeted Cancer Therapies. J Natl Cancer Inst Monogr, 2019. 2019(53).
12. Yeuan Ting Lee, Yi Jer Tan, Chern Ein Oon. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol, 2018. 834: p. 188-196.
13. Kanu Chatterjee, Jianqing Zhang, Norman Honbo, Joel S Karliner. Doxorubicin cardiomyopathy. Cardiology, 2010. 115(2): p. 155-62.
14. Ioannis Karakikes, Mohamed Ameen, Vittavat Termglinchan, Joseph C Wu. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res, 2015. 117(1): p. 80-8.
15. James A Dykens, Lisa D Marroquin, Yvonne Will. Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Rev Mol Diagn, 2007. 7(2): p. 161-75.
16. J S Mitcheson, J C Hancox, A J Levi. Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc Res, 1998. 39(2): p. 280-300.
17. Peter, A.K., M.A. Bjerke, and L.A. Leinwand. Biology of the cardiac myocyte in heart disease. Mol Biol Cell, 2016. 27(14): p. 2149-60.
18. Partha Mukhopadhyay, Mohanraj Rajesh, Sándor Bátkai, Vivek Patel, Yoshihiro Kashiwaya, Lucas Liaudet, Oleg V Evgenov, Ken Mackie, György Haskó, Pál Pacher. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc Res, 2010. 85(4): p. 773-84.
19. Andrey V Kuznetsov, Sabzali Javadov, Stephan Sickinger, Sandra Frotschnig, Michael Grimm. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta, 2015. 1853(2): p. 276-84.
20. Liu, Y.C., Y.J. Wang, and S.N. Wu. The mechanisms of propofol-induced block on ion currents in differentiated H9c2 cardiac cells. Eur J Pharmacol, 2008. 590(1-3): p. 93-8.
21. W Wang, M Watanabe, T Nakamura, Y Kudo, R Ochi. Properties and expression of Ca2+-activated K+ channels in H9c2 cells derived from rat ventricle. Am J Physiol, 1999. 276(5): p. H1559-66.
22. Hai-Shan Lu, He-Ping Chen, Song Wang, Hai-Hong Yu, Xiao-Shan Huang, Qi-Ren Huang, Ming He. Hypoxic preconditioning up-regulates DJ-1 protein expression in rat heart-derived H9c2 cells through the activation of extracellular-regulated kinase 1/2 pathway. Mol Cell Biochem, 2012. 370(1-2): p. 231-40.
23. W C Claycomb, N A Lanson Jr, B S Stallworth, D B Egeland, J B Delcarpio, A Bahinski, N J Izzo Jr. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A, 1998. 95(6): p. 2979-84.
24. Michael A Laflamme, Joseph Gold, Chunhui Xu, Mohammad Hassanipour, Elen Rosler, Shailaja Police, Veronica Muskheli, Charles E Murry. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol, 2005. 167(3): p. 663-71.
25. John L Mignone, Kareen L Kreutziger, Sharon L Paige, Charles E Murry. Cardiogenesis from human embryonic stem cells. Circ J, 2010. 74(12): p. 2517-26.
26. Ping Liang, Feng Lan, Andrew S Lee, Tingyu Gong, Veronica Sanchez-Freire, Yongming Wang, Sebastian Diecke, Karim Sallam, Joshua W Knowles, Paul J Wang, Patricia K Nguyen, Donald M Bers, Robert C Robbins, Joseph C Wu. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 2013. 127(16): p. 1677-91.
27. Arun Sharma, Wesley L McKeithan, Ricardo Serrano, Tomoya Kitani, Paul W Burridge, Juan C Del Álamo, Mark Mercola, Joseph C Wu. Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat Protoc, 2018. 13(12): p. 3018-3041.
28. Sangeeta Rivankar. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther, 2014. 10(4): p. 853-8.
29. Kaviyarasi Renu, Abilash V G, Tirupathi Pichiah P B, Sankarganesh Arunachalam. Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur J Pharmacol, 2018. 818: p. 241-253.
30. Jose Luis Zamorano, Patrizio Lancellotti, Daniel Rodriguez Muñoz, Victor Aboyans, Riccardo Asteggiano, Maurizio Galderisi, Gilbert Habib, Daniel J Lenihan, Gregory Y H Lip. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J, 2016. 37(36): p. 2768-2801.
31. Toni K Choueiri, Erica L Mayer, Youjin Je, Jonathan E Rosenberg, Paul L Nguyen, Georges R Azzi, Joaquim Bellmunt, Harold J Burstein, Fabio A B Schutz. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. J Clin Oncol, 2011. 29(6): p. 632-8.
32. Christopher J Richards, Youjin Je, Fabio A B Schutz, Daniel Y C Heng, Susan M Dallabrida, Javid J Moslehi, Toni K Choueiri. Incidence and risk of congestive heart failure in patients with renal and nonrenal cell carcinoma treated with sunitinib. J Clin Oncol, 2011. 29(25): p. 3450-6.
33. Kimura, K. and H. Morita. Cardiovascular Complications by EGFR Tyrosine Kinase Inhibitors in Patients with Lung Cancer. Int Heart J, 2021. 62(5): p. 949-951.
34. Weatherald, J., M.C. Chaumais, and D. Montani. Pulmonary arterial hypertension induced by tyrosine kinase inhibitors. Curr Opin Pulm Med, 2017. 23(5): p. 392-397.
35. Shah, R.R. and J. Morganroth. Update on Cardiovascular Safety of Tyrosine Kinase Inhibitors: With a Special Focus on QT Interval, Left Ventricular Dysfunction and Overall Risk/Benefit. Drug Saf, 2015. 38(8): p. 693-710.
36. Xiaoyan Cui, Jinglei Sun, Congxin Li, Suhua Qiu, Chenxia Shi, Jingtao Ma, Yanfang Xu. Downregulation of hERG channel expression by tyrosine kinase inhibitors nilotinib and vandetanib predominantly contributes to arrhythmogenesis. Toxicol Lett, 2022. 365: p. 11-23.
37. McGlynn, K.A., J.L. Petrick, and H.B. El-Serag. Epidemiology of Hepatocellular Carcinoma. Hepatology, 2021. 73 Suppl 1(Suppl 1): p. 4-13.
38. Antonio Ascione, Luca Fontanella, Michele Imparato, Luca Rinaldi, Massimo De Luca. Mortality from cirrhosis and hepatocellular carcinoma in Western Europe over the last 40 years. Liver Int, 2017. 37(8): p. 1193-1201.
39. Marco Vincenzo Lenti, Luca Pasina, Sara Cococcia, Laura Cortesi, Emanuela Miceli, Costanza Caccia Dominioni, Martina Pisati, Caterina Mengoli, Francesco Perticone, Alessandro Nobili, Antonio Di Sabatino, Gino Roberto Corazza; REPOSI Investigators. Mortality rate and risk factors for gastrointestinal bleeding in elderly patients. Eur J Intern Med, 2019. 61: p. 54-61.
40. Luca Rinaldi, Alessandro Perrella, Maria Guarino, Massimo De Luca, Guido Piai, Nicola Coppola, Pia Clara Pafundi, Fortunato Ciardiello, Morena Fasano, Erika Martinelli, Giovanna Valente, Riccardo Nevola, Caterina Monari, Lucia Miglioresi, Barbara Guerrera, Massimiliano Berretta, Ferdinando Carlo Sasso, Filomena Morisco, Antonio Izzi, Luigi Elio Adinolfi. Incidence and risk factors of early HCC occurrence in HCV patients treated with direct acting antivirals: a prospective multicentre study. J Transl Med, 2019. 17(1): p. 292.
41. Masatoshi Kudo, Masafumi Ikeda, Tadatoshi Takayama, Kazushi Numata, Namiki Izumi, Junji Furuse, Takuji Okusaka, Masumi Kadoya, Satoshi Yamashita, Yuichiro Ito, Norihiro Kokudo. Safety and efficacy of sorafenib in Japanese patients with hepatocellular carcinoma in clinical practice: a subgroup analysis of GIDEON. J Gastroenterol, 2016. 51(12): p. 1150-1160.
42. Jason M Duran, Catherine A Makarewich, Danielle Trappanese, Polina Gross, Sharmeen Husain, Jonathan Dunn , Hind Lal, Thomas E Sharp, Timothy Starosta, Ronald J Vagnozzi, Remus M Berretta, Mary Barbe, Daohai Yu, Erhe Gao, Hajime Kubo, Thomas Force, Steven R Houser. Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res, 2014. 114(11): p. 1700-1712.
43. C P Escalante, Y C Chang, K Liao, T Rouleau, J Halm, P Bossi, S Bhadriraju, N Brito-Dellan, S Sahai, S W Yusuf, A Zalpour, L S Elting. Meta-analysis of cardiovascular toxicity risks in cancer patients on selected targeted agents. Support Care Cancer, 2016. 24(9): p. 4057-74.
44. Wu, C. and K. Shemisa. Sorafenib-Associated Heart Failure Complicated by Cardiogenic Shock after Treatment of Advanced Stage Hepatocellular Carcinoma: A Clinical Case Discussion. Case Rep Cardiol, 2017. 2017: p. 7065759.
45. Nicole White Al-Habeeb, Vathany Kulasingam, Eleftherios P Diamandis, George M Yousef, Gregory J Tsongalis, Louis Vermeulen, Ziqiang Zhu, Suzanne Kamel-Reid. The Use of Targeted Therapies for Precision Medicine in Oncology. Clin Chem, 2016. 62(12): p. 1556-1564.
46. Bashraheel, S.S., A. Domling, and S.K. Goda. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother, 2020. 125: p. 110009.
47. Shah, R.R., J. Morganroth, and D.R. Shah. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf, 2013. 36(5): p. 295-316.
48. Lenihan, D.J. and P.R. Kowey. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist, 2013. 18(8): p. 900-8.
49. Chaar, M., J. Kamta, and S. Ait-Oudhia. Mechanisms, monitoring, and management of tyrosine kinase inhibitors-associated cardiovascular toxicities. Onco Targets Ther, 2018. 11: p. 6227-6237.
50. Tao Yang, Young Wook Chun, Dina M Stroud, Jonathan D Mosley, Bjorn C Knollmann, Charles Hong, Dan M Roden. Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current. Circulation, 2014. 130(3): p. 224-34.
51. Zhongju Lu, Chia-Yen C Wu, Ya-Ping Jiang, Lisa M Ballou, Chris Clausen, Ira S Cohen, Richard Z Lin. Suppression of phosphoinositide 3-kinase signaling and alteration of multiple ion currents in drug-induced long QT syndrome. Sci Transl Med, 2012. 4(131): p. 131ra50.
52. Giuseppe Curigliano, Daniela Cardinale, Susan Dent, Carmen Criscitiello, Olexiy Aseyev, Daniel Lenihan, Carlo Maria Cipolla. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin, 2016. 66(4): p. 309-25.
53. Luca Gianni, Eugene H Herman, Steven E Lipshultz, Giorgio Minotti, Narine Sarvazyan, Douglas B Sawyer. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol, 2008. 26(22): p. 3777-84.
54. Emanuela Salvatorelli, Pierantonio Menna, Massimo Chello, Elvio Covino, Giorgio Minotti. Modeling Human Myocardium Exposure to Doxorubicin Defines the Risk of Heart Failure from Low-Dose Doxorubicin. J Pharmacol Exp Ther, 2017. 362(2): p. 263-270.
55. Giorgio Minotti, Pierantonio Menna, Emanuela Salvatorelli, Gaetano Cairo, Luca Gianni. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev, 2004. 56(2): p. 185-229.
56. Yanti Octavia, Carlo G Tocchetti, Kathleen L Gabrielson, Stefan Janssens, Harry J Crijns, An L Moens. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol, 2012. 52(6): p. 1213-25.
57. May, P.M., G.K. Williams, and D.R. Williams. Solution chemistry studies of adriamycin--iron complexes present in vivo. Eur J Cancer (1965), 1980. 16(9): p. 1275-6.
58. Lüscher, T.F. and M. Barton. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation, 2000. 102(19): p. 2434-40.
59. E Goormaghtigh, P Chatelain, J Caspers, J M Ruysschaert. Evidence of a specific complex between adriamycin and negatively-charged phospholipids. Biochim Biophys Acta, 1980. 597(1): p. 1-14.
60. K Kashfi, M Israel, T W Sweatman, R Seshadri, G A Cook. Inhibition of mitochondrial carnitine palmitoyltransferases by adriamycin and adriamycin analogues. Biochem Pharmacol, 1990. 40(7): p. 1441-8.
61. Schlame, M., D. Rua, and M.L. Greenberg. The biosynthesis and functional role of cardiolipin. Prog Lipid Res, 2000. 39(3): p. 257-88.
62. K Nicolay, R J Timmers, E Spoelstra, R Van der Neut, J J Fok, Y M Huigen, A J Verkleij, B De Kruijff. The interaction of adriamycin with cardiolipin in model and rat liver mitochondrial membranes. Biochim Biophys Acta, 1984. 778(2): p. 359-71.
63. Parker, M.A., V. King, and K.P. Howard. Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically oriented phospholipid bilayers. Biochim Biophys Acta, 2001. 1514(2): p. 206-16.
64. N Sarvazyan. Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol, 1996. 271(5 Pt 2): p. H2079-85.
65. Ashley, N. and J. Poulton. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs. Biochem Biophys Res Commun, 2009. 378(3): p. 450-5.
66. E Goormaghtigh, P Chatelain, J Caspers, J M Ruysschaert. Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol, 1980. 29(21): p. 3003-10.
67. Ventura-Clapier, R., A. Garnier, and V. Veksler. Energy metabolism in heart failure. J Physiol, 2004. 555(Pt 1): p. 1-13.
68. Ekaterina Yu Podyacheva, Ekaterina A Kushnareva, Andrei A Karpov, Yana G Toropova. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol, 2021. 12: p. 670479.
69. Joji Nitobe, Seiji Yamaguchi, Masaki Okuyama, Naoki Nozaki, Masataka Sata, Takuya Miyamoto, Yasuchika Takeishi, Isao Kubota, Hitonobu Tomoike. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res, 2003. 57(1): p. 119-28.
70. L C Papadopoulou, G Theophilidis, G N Thomopoulos, A S Tsiftsoglou. Structural and functional impairment of mitochondria in adriamycin-induced cardiomyopathy in mice: suppression of cytochrome c oxidase II gene expression. Biochem Pharmacol, 1999. 57(5): p. 481-9.
71. Pop-Busui, R., A. Sima, and M. Stevens. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev, 2006. 22(4): p. 257-73.
72. Bonomini, F., L.F. Rodella, and R. Rezzani. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis, 2015. 6(2): p. 109-20.
73. Liou, G.Y. and P. Storz. Reactive oxygen species in cancer. Free Radic Res, 2010. 44(5): p. 479-96.
74. Hideaki Kaneto, Naoto Katakami, Munehide Matsuhisa, Taka-aki Matsuoka. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm, 2010. 2010: p. 453892.
75. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol, 2012. 13(2): p. 89-102.
76. Malhotra, J.D. and R.J. Kaufman. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal, 2007. 9(12): p. 2277-93.
77. Walter, P. and D. Ron. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011. 334(6059): p. 1081-6.
78. H Yoshida, T Matsui, A Yamamoto, T Okada, K Mori. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 2001. 107(7): p. 881-91.
79. Fu, H.Y., et al. Hai Ying Fu, Shoji Sanada, Takashi Matsuzaki, Yulin Liao, Keiji Okuda, Masaki Yamato, Shota Tsuchida, Ryo Araki, Yoshihiro Asano, Hiroshi Asanuma, Masanori Asakura, Brent A French, Yasushi Sakata, Masafumi Kitakaze, Tetsuo Minamino. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction. Circ Res, 2016. 118(5): p. 798-809.
80. Tabas, I. and D. Ron. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol, 2011. 13(3): p. 184-90.
81. Omura, T. and R. Sato. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem, 1964. 239: p. 2370-8.
82. Galina I Lepesheva, Tatyana Y Hargrove, Yuliya Kleshchenko, W David Nes, Fernando Villalta, Michael R Waterman. CYP51: A major drug target in the cytochrome P450 superfamily. Lipids, 2008. 43(12): p. 1117-25.
83. Imadeldin Elfaki, Rashid Mir, Fahad M Almutairi, Faisel M Abu Duhier. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev, 2018. 19(8): p. 2057-2070.
84. Zanger, U.M. and M. Schwab. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther, 2013. 138(1): p. 103-41.
85. Annalora, A.J., C.B. Marcus, and P.L. Iversen. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism. Drug Metab Dispos, 2017. 45(4): p. 375-389.
86. Ortiz de Montellano, P.R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev, 2010. 110(2): p. 932-48.
87. Li, S., L. Du, and R. Bernhardt. Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol, 2020. 28(6): p. 445-454.
88. Begoña Dobon, Carla Rossell, Sandra Walsh, Jaume Bertranpetit. Is there adaptation in the human genome for taste perception and phase I biotransformation? BMC Evol Biol, 2019. 19(1): p. 39.
89. C Matsuda, Y K Hayashi, M Ogawa, M Aoki, K Murayama, I Nishino, I Nonaka, K Arahata, R H Brown Jr. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet, 2001. 10(17): p. 1761-6.
90. Lars Klinge, Steve Laval, Sharon Keers, Faye Haldane, Volker Straub, Rita Barresi, Kate Bushby. From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis. Faseb j, 2007. 21(8): p. 1768-76.
91. Jaclyn P Kerr, Andrew P Ziman, Amber L Mueller, Joaquin M Muriel, Emily Kleinhans-Welte, Jessica D Gumerson, Steven S Vogel, Christopher W Ward, Joseph A Roche, Robert J Bloch. Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci U S A, 2013. 110(51): p. 20831-6.
92. Dimple Bansal, Katsuya Miyake, Steven S Vogel, Séverine Groh, Chien-Chang Chen, Roger Williamson, Paul L McNeil, Kevin P Campbell. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature, 2003. 423(6936):168-72.
93. Lars Klinge, John Harris, Caroline Sewry, Richard Charlton, Louise Anderson, Steve Laval, Yen-Hui Chiu, Mark Hornsey, Volker Straub, Rita Barresi, Hanns Lochmüller, Kate Bushby. Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve, 2010. 41(2): p. 166-73.
94. G Cenacchi, M Fanin, L B De Giorgi, C Angelini. Ultrastructural changes in dysferlinopathy support defective membrane repair mechanism. J Clin Pathol, 2005. 58(2): p. 190-5.
95. Han, R. Muscle membrane repair and inflammatory attack in dysferlinopathy. Skelet Muscle, 2011. 1(1): p. 10.
96. Kanneboyina Nagaraju, Rashmi Rawat, Edina Veszelovszky, Rachana Thapliyal, Akanchha Kesari, Susan Sparks, Nina Raben, Paul Plotz, Eric P Hoffman. Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am J Pathol, 2008. 172(3): p. 774-85.
97. Rashmi Rawat, Tatiana V Cohen, Beryl Ampong, Dwight Francia, Andrea Henriques-Pons, Eric P Hoffman, Kanneboyina Nagaraju. Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle. Am J Pathol, 2010. 176(6): p. 2891-900.
98. Luis A Cea, Bruno A Cisterna, Carlos Puebla, Marina Frank, Xavier F Figueroa, Christopher Cardozo, Klaus Willecke, Ramón Latorre, Juan C Sáez. De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci U S A, 2013. 110(40): p. 16229-34.
99. Luis A Cea, Manuel A Riquelme, Bruno A Cisterna, Carlos Puebla, José L Vega, Maximiliano Rovegno, Juan C Sáez. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol, 2012. 245(8): p. 423-36.
100. Sáez, J.C. and L. Leybaert. Hunting for connexin hemichannels. FEBS Lett, 2014. 588(8): p. 1205-11.
101. Luis A Cea, Manuel A Riquelme, Anibal A Vargas, Carolina Urrutia, Juan C Sáez. Pannexin 1 channels in skeletal muscles. Front Physiol, 2014. 5: p. 139.
102. Ana M Cárdenas, Arlek M González-Jamett, Luis A Cea, Jorge A Bevilacqua, Pablo Caviedes. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol, 2016. 283(Pt A): p. 246-54.
103. Luis A Cea, Jorge A Bevilacqua, Christian Arriagada, Ana María Cárdenas, Anne Bigot, Vincent Mouly, Juan C Sáez, Pablo Caviedes. The absence of dysferlin induces the expression of functional connexin-based hemichannels in human myotubes. BMC Cell Biol, 2016. 17 Suppl 1(Suppl 1): p. 15.
104. Gabriela Fernández, Guisselle Arias-Bravo, Jorge A Bevilacqua, Mario Castillo-Ruiz, Pablo Caviedes, Juan C Sáez, Luis A Cea. Myofibers deficient in connexins 43 and 45 expression protect mice from skeletal muscle and systemic dysfunction promoted by a dysferlin mutation. Biochim Biophys Acta Mol Basis Dis, 2020. 1866(8): p. 165800.
105. Amy E Vincent, Hannah S Rosa, Charlotte L Alston, John P Grady, Karolina A Rygiel, Mariana C Rocha, Rita Barresi, Robert W Taylor, Doug M Turnbull. Dysferlin mutations and mitochondrial dysfunction. Neuromuscul Disord, 2016. 26(11): p. 782-788.
106. Ponvijay Kombairaju, Jaclyn P Kerr, Joseph A Roche, Stephen J P Pratt, Richard M Lovering, Thomas E Sussan, Jung-Hyun Kim, Guoli Shi, Shyam Biswal, Christopher W Ward. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle. Front Physiol, 2014. 5:57.
107. Jessica R Terrill, Hannah G Radley-Crabb, Tomohito Iwasaki, Frances A Lemckert, Peter G Arthur, Miranda D Grounds. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J, 2013.280(17):4149-64.
108. Lingappan, K. NF-κB in Oxidative Stress. Curr Opin Toxicol, 2018. 7: p. 81-86.
109. Fanin, M., A.C. Nascimbeni, and C. Angelini. Muscle atrophy, ubiquitin-proteasome, and autophagic pathways in dysferlinopathy. Muscle Nerve, 2014. 50(3): p. 340-7.
110. Huang, J. and X. Zhu. The molecular mechanisms of calpains action on skeletal muscle atrophy. Physiol Res, 2016. 65(4): p. 547-560.
111. Kappus, H., H. Muliawan, and M.E. Scheulen. In vivo studies on adriamycin-induced lipid peroxidation and effects of ferrous ions. Dev Toxicol Environ Sci, 1980. 8: p. 635-8.
112. Xu, X., H.L. Persson, and D.R. Richardson. Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol, 2005. 68(2): p. 261-71.
113. G Minotti, S Recalcati, A Mordente, G Liberi, A M Calafiore, C Mancuso, P Preziosi, G Cairo. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. Faseb j, 1998. 12(7): p. 541-52.
114. Yansen Li, Changqing Jing, Yuezhi Chen, Jinshen Wang, Mingliang Zhou, Xin Liu, Dong Sun, Linjun Mu, Leping Li, Xiaobo Guo. Expression of tumor necrosis factor α-induced protein 8 is upregulated in human gastric cancer and regulates cell proliferation, invasion and migration. Mol Med Rep, 2015. 12(2): p. 2636-42.
115. Yan Zhang, Meng-Yun Wang, Jing He, Jiu-Cun Wang, Ya-Jun Yang, Li Jin, Zhi-Yu Chen, Xue-Jun Ma, Meng-Hong Sun, Kai-Qin Xia, Xiao-Nan Hong, Qing-Yi Wei, Xiao-Yan Zhou. Tumor necrosis factor-α induced protein 8 polymorphism and risk of non-Hodgkin's lymphoma in a Chinese population: a case-control study. PLoS One, 2012. 7(5): p. e37846.
116. Yukie Mizuta, Kentaro Tokuda, Jie Guo, Shuo Zhang, Sayoko Narahara, Takahito Kawano, Masaharu Murata, Ken Yamaura, Sumio Hoka, Makoto Hashizume, Tomohiko Akahoshi. Sodium thiosulfate prevents doxorubicin-induced DNA damage and apoptosis in cardiomyocytes in mice. Life Sci, 2020. 257: p. 118074.
117. Jolanda Sabatino, Salvatore De Rosa, Laura Tammè, Claudio Iaconetti, Sabato Sorrentino, Alberto Polimeni, Chiara Mignogna, Andrea Amorosi, Carmen Spaccarotella, Masakazu Yasuda, Ciro Indolfi. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol, 2020. 19(1): p. 66.
118. Xiaojun Lian, Jianhua Zhang, Samira M Azarin, Kexian Zhu, Laurie B Hazeltine, Xiaoping Bao, Cheston Hsiao, Timothy J Kamp, Sean P Palecek. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc, 2013. 8(1): p. 162-75.
119. Luca Sala, Berend J van Meer, Leon G J Tertoolen, Jeroen Bakkers, Milena Bellin, Richard P Davis, Chris Denning, Michel A E Dieben, Thomas Eschenhagen, Elisa Giacomelli, Catarina Grandela, Arne Hansen, Eduard R Holman, Monique R M Jongbloed, Sarah M Kamel, Charlotte D Koopman, Quentin Lachaud, Ingra Mannhardt, Mervyn P H Mol, Diogo Mosqueira, Valeria V Orlova, Robert Passier, Marcelo C Ribeiro, Umber Saleem, Godfrey L Smith, Francis L Burton, Christine L Mummery. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo. Circ Res, 2018. 122(3): p. e5-e16.
120. Walter Swardfager, Krista Lanctôt, Lana Rothenburg, Amy Wong, Jaclyn Cappell, Nathan Herrmann. A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry, 2010. 68(10): p. 930-41.
121. Yekta Dowlati, Nathan Herrmann, Walter Swardfager, Helena Liu, Lauren Sham, Elyse K Reim, Krista L Lanctôt. A meta-analysis of cytokines in major depression. Biol Psychiatry, 2010. 67(5): p. 446-57.
122. J Brynskov, P Foegh, G Pedersen, C Ellervik, T Kirkegaard, A Bingham, T Saermark. Tumour necrosis factor alpha converting enzyme (TACE) activity in the colonic mucosa of patients with inflammatory bowel disease. Gut, 2002. 51(1): p. 37-43.
123. H Hauner, T Petruschke, M Russ, K Röhrig, J Eckel. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia, 1995. 38(7): p. 764-71.
124. Wang, X. and Y. Lin. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin, 2008. 29(11): p. 1275-88.
125. Boram Ham, Maria Celia Fernandez, Zarina D'Costa, Pnina Brodt. The diverse roles of the TNF axis in cancer progression and metastasis. Trends Cancer Res, 2016. 11(1): p. 1-27.
126. Sidiropoulos, P.I. and D.T. Boumpas. Differential drug resistance to anti-tumour necrosis factor agents in rheumatoid arthritis. Ann Rheum Dis, 2006. 65(6): p. 701-3.
127. L V Anderson, K Davison, J A Moss, C Young, M J Cullen, J Walsh, M A Johnson, R Bashir, S Britton, S Keers, Z Argov, I Mahjneh, F Fougerousse, J S Beckmann, K M Bushby. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet, 1999. 8(5): p. 855-61.
128. Ellgaard, L. and A. Helenius. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol, 2003. 4(3): p. 181-91.
129. Janero, D.R., D. Hreniuk, and H.M. Sharif. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury. J Cell Physiol, 1991. 149(3): p. 347-64.
130. Schröder, M. and R.J. Kaufman. ER stress and the unfolded protein response. Mutat Res, 2005. 569(1-2): p. 29-63.
131. Bulleid, N.J. Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol, 2012. 4(11).
132. K Mori, T Kawahara, H Yoshida, H Yanagi, T Yura. Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells, 1996. 1(9): p. 803-17.
133. Tirasophon, W., A.A. Welihinda, and R.J. Kaufman. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev, 1998. 12(12): p. 1812-24.
134. Shen, X., K. Zhang, and R.J. Kaufman. The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat, 2004. 28(1-2): p. 79-92.
135. F Urano, X Wang, A Bertolotti, Y Zhang, P Chung, H P Harding, D Ron. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000. 287(5453): p. 664-6.
136. Lee, A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods, 2005. 35(4): p. 373-81.
137. K Haze, H Yoshida, H Yanagi, T Yura, K Mori. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell, 1999. 10(11): p. 3787-99.
138. Harding, H.P., Y. Zhang, and D. Ron. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999. 397(6716): p. 271-4.
139. Shamu, C.E. and P. Walter. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. Embo j, 1996. 15(12): p. 3028-39.
140. Collins, F.S. and H. Varmus. A new initiative on precision medicine. N Engl J Med, 2015. 372(9): p. 793-5.
141. Arun Sharma, Caleb Marceau, Ryoko Hamaguchi, Paul W Burridge, Kuppusamy Rajarajan, Jared M Churko, Haodi Wu, Karim I Sallam, Elena Matsa, Anthony C Sturzu, Yonglu Che, Antje Ebert, Sebastian Diecke, Ping Liang, Kristy Red-Horse, Jan E Carette, Sean M Wu, Joseph C Wu. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ Res, 2014. 115(6): p. 556-66.
142. Keshav K Singh, Mariola Kulawiec, Ivan Still, Mohamed M Desouki, Joseph Geradts, Sei-Ichi Matsui. Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene, 2005. 354: p. 140-6.
143. Peterson, J.A. and S.E. Graham. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure, 1998. 6(9): p. 1079-85.
校內:2027-08-01公開