| 研究生: |
陳皇甫 Chen, Haung-Fu |
|---|---|
| 論文名稱: |
齊次基底移動最小二乘法在平板分析上之應用 Analysis of Plate by the Moving Least Square Method With Homogeneous Base |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 移動最小二乘法 、無元素法 、平板理論 |
| 外文關鍵詞: | Moving Least Square Method, Element-free Method, Theory of Plates |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用滿足控制方程式之齊次解為基底函數建立移動最小二乘法以求解平板問題,本文方法重要優點為離散點函數值及其一階導數,以及邊界條件之殘值以加權最小二乘法建立以節點值、節點一階導數值和其邊界條件值所表達的近似函數,最後由近似函數與節點值與一階導數在節點上之一致性條件,即可解得節點上之變數值而得邊界值問題之近似解。
數值算例中,以不同邊界和載重的板,長寬比1與2之板作為計算範例,利用數值分析得到的位移、轉角、彎矩及剪力與其解析解進行比較及討論本方法的可行性和精度。
In this paper, we use the homogeneous solutions of the governing equation as the basis functions to estabilish a moving least square method to solve the plate problems. The novelty of this approach is that, using the moving least square technique, we attempt to reduce the weighted sum of the residuals that results from the approximation to the field variable and it's derivatives ,and the boundary conditions. The process lead to an interpolation function which is express in terms of the nodal value of the field variable, the nodal value of it's derivatives, and the nodal value of the homogeneous terms in the differential equation. According to the requirement of consistency of the interpolation function with its value at nodes, the point collocation technique was employed to determine the unknown nodal values, and so complete the process of determining an approximation solution to the given problem.
Various examples include the plates under different loads and different boundary conditions are solved to examine the accuracy and the rate of convergency of this method.
[1] L. B. Lucy (1977), A numerical approach to the testing of the fission hypothesis,The Astron, J.8, 12, 1013-1024.
[2] L. D. Libersky and A. G. Perschek(1990), Smooth Particle Hydrodynamics with Strength of Materials, ed. H. E. Trease, M. J. Fritts, and W. P. Crowley(Springer Verlag), 248.
[3] B. Nayroles, G. Touzot and P. Villon(1992), Generalizing the finite element method diffuse approximation and diffuse elements, Computational Mechanics, 10, 307-318.
[4] T. Belytschko, L. Gu and Y. Y. Lu (1994), Fracture and crack growth by element-free Galerkin methods, Modeling and Simulation in Materials
Science and Engineering.2 , 519-534.
[5] T. Belytschko, Y. Y. Lu (1995),Element-free galerkin methods for static and dynamic fraxture,Internationl Journal of Solids and Structures 32,2547-2570.
[6] W. K. Liu, S. Jun and Y. F. Zhang(1995), Reproducing kernel particle methods,Int. J. Numerical methods Engineering, 20, 1081-1106.
[7] J. S. Chen, C.T. Wu and W.K. Liu(1996), Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer methods in Applied Mechanics And Engineering, 139, 195-227.
[8] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco(1996), A stabilized finite point method for analysis of fluid mechanics problems,Computer Methods in Applied Mechanics & Engineering, 139, 315-346.
[9] 盛若磐(2000), 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論文集, 國立中央大學土木系.
[10] T.Belytschko,Y.Krongauz,D. Organ,M. Fleming and P. Krysl(1996),An overview and recent developments,computer methods in applied mechanics & engineering,139,3-47.
[11] P.Krysl and T.Belytschko(2001),a library to computer the element free galerkin shape functions,computer methods in applied mechanics engineering,190,2181-2205.
[12] Yung-Ming Wang,Syuan-Mu Chen,Chih-Ping Wu(2010),A meshless collocation method based on the differential reproducing kernel interpolation.
[13] Shin-Wei Yang,Yung-Ming Wang,Chih-Ping Wu(2010),A meshless collocation method based on the differential reproducing kernel approximation.
[14] Yung-Ming Wang, Shin-Wei Yang,Chih-Ping Wu(2010),A meshless collocation method for the plane problems of functionally graded material beams and plates using the DRK interpolation.
[15] Szilard Rudolph(1974), Dr.-Ing., PE, Theory and Analysis of Plates - Classical and Numerical Methods.