簡易檢索 / 詳目顯示

研究生: 伍雯琪
Wu, Wen-Chi
論文名稱: 利用時域有限差分法模擬不可分辨光子之洪-歐-孟德爾效應
Hong-Ou-Mandel Dip Simulated by Finite-Difference Time-Domain Method Photon Wave Function for Indistinguishable Photons
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 43
中文關鍵詞: 洪-歐-孟德爾效應(Hong-Ou-Mandel effect)不可分辨之光子(indistinguishable photons)光子波函數(photon wave function)
外文關鍵詞: Hong-Ou-Mandel effect, indistinguishable photons, photon wave function
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 英文延伸摘要 II 誌謝 VII 目錄 VIII 圖目錄 IX 第一章. 序論 1 第二章. 洪-歐-孟德爾效應(Hong-Ou-Mandel effect) 3 2.1. 洪-歐-孟德爾效應簡介 3 2.2. 分析方法 4 2.2.1. 矩陣光學(Matrix Optics) 4 2.2.2. 自發參量下轉換(Spontaneous Parametric Down-Conversion) 7 2.2.3. 50%/50%分光鏡計算與討論 8 第三章. 光子波動力學 11 3.1. 從愛因斯坦運動學概念下推導馬克士威方程式 11 3.2. Wave-Packet Modes理論 13 第四章. 有限差分時域法(FDTD) 18 4.1. 有限差分時域法(FDTD)簡介 18 4.2. 有限差分時域法(FDTD)演算法 18 4.3. The Total-Field / Scattered-Field Technique 20 第五章. 模擬結果 24 第六章. 結論 30 參考文獻 31

    [1] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 3rd Edition, Chapter 1 pp.4-5
    [2] Titulaer, U. M., & Glauber, R. J. Density operators for coherent fields. Physical Review, 145(4), 1041 (1966)
    [3] C. K. Hong, Z. Y. Ou, L. Mandel, “Measurement of Subpicosecond Time Intervals Between Two Photons by Interference,” Phys. Rev. Lett. 59, 2044 (1987)
    [4] Couteau, C. Spontaneous parametric down-conversion. Contemporary Physics, 59(3), 291-304 (2018)
    [5] Burnham, D. C., & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Physical Review Letters, 25(2), 84 (1970)
    [6] Greenberger, D. M., Horne, M., Zeilinger, A., & Żukowski, M. Bell theorem without inequalities for two particles. II. Inefficient detectors. Physical Review A—Atomic, Molecular, and Optical Physics, 78(2), 022111 (2008)
    [7] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 3rd Edition, Chapter 22 pp.1026-1027
    [8] 陳安裕。光子量子波方程之有限差分時域法模擬。成功大學碩士論文。(2016)
    [9] B. J. Smith and M. G. Raymer, New J. Phys. 9, 414 (2007)
    [10] Dirac, P. A. M. The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 117(778), 610-624 (1928)
    [11] Dirac, P. A. M. The quantum theory of the electron. Part II. Proceedings of the royal society of London. Series A, Containing papers of a mathematical and physical character, 118(779), 351-361 (1928)
    [12] Bialynicki-Birula, I. V photon wave function. Progress in optics, 36, 245-294 (1996)
    [13] M. V. Fedorov, M. A. Efremov, A. E. Kazakov, K. W. Chan, C. K. Law, J. H. Eberly, “Spontaneous emission of a photon: Wave-packet structures and atom-photon entanglement,” Phys. Rev. A, 72, 032110 (2005)
    [14] J. E. Sipe, “Photon wave functions,” Phys. Rev. A, 52, 1875 (1995)
    [15] U. M. Titulaer, R. J. Glauber, “Density operators for coherent fields,” Phys. Rev., 145, 1041 (1966)
    [16] M. G. Raymer, Z. W. Li, I. A. Walmsley, “Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description,” Phys. Rev. Lett., 63, 1586 (1989)
    [17] M. J. Bastiaans, T. Alieva, “Bi-orthonormal sets of Gaussian-type modes,” J. Phys. A, 38, 9931 (2005)
    [18] M. G. Raymer, Brian J. Smith, “Photon wave functions, wave-packet quantization of light, and coherence theory,” New J. Phys., 9, 414 (2007)
    [19] Landau, L., & Peierls, R. Quantum electrodynamics in configuration space. Z. Phys, 62, 188-200 (1930)
    [20] Taflove, A., Hagness, S. C., & Piket-May, M. Computational electromagnetics: the finite-difference time-domain method. The Electrical Engineering Handbook, 3(629-670), 15 (2005)

    無法下載圖示 校內:2029-08-30公開
    校外:2029-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE