簡易檢索 / 詳目顯示

研究生: 郭亮彤
Kuo, Liang-Tong
論文名稱: 低蛋胺酸飲食與耐力運動對成長中雄性大鼠骨骼之代謝、組織型態與生物力學特性之影響
The Effects of Low-methionine Diets and Endurance Exercise on Bone Metabolism, Histomorphometry and Biomaterial Properties in Growing Male Rats
指導教授: 黃滄海
Huang, Tsang-Hai
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 42
中文關鍵詞: 蛋胺酸運動骨骼代謝
外文關鍵詞: Methionine, Exercise, Bone metabolism
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究旨在探討低蛋胺酸飲食與耐力運動對成長中雄性大鼠骨骼之代謝、組織型態與生物力學特性之影響。
    方法:週齡7週之雄性SD大鼠分為六組(每組n=12),依照飲食中蛋胺酸(methionine, MET)含量與運動訓練 (exercise, EXE) 之有無,分成0.86%MET、0.52%MET、0.17%MET、0.86%MET+EXE、0.52%MET+EXE、0.17%MET+EXE等六組,其中,以0.86%MET為控制組,而0.52%MET組和0.17%MET組分別為降低40%與80%MET含量之低蛋胺酸飲食組別;耐力運動組別的動物則以24公尺/分鐘、60分鐘/天及5天/週之跑步訓練介入。實驗介入期為期八週。採取自由取食之方式,每週記錄兩天動物之體重變化與飲食飲水量,完成為期八週之介入後,將犧牲動物後所得之血液與骨骼樣本,進行血清骨代謝、骨組織型態和骨組織生物力學特性等變項分析,統計方法為二因子(蛋胺酸耐力運動)變異數分析(two-way ANOVA) (α = .05)。
    結果:經過八週不同蛋胺酸飲食與耐力訓練後,體重方面,METEXE之交互作用達顯著水準 (p=.003),0.52%MET組之大鼠在體重增加方面顯著高於0.86%MET組和0.17%MET組,又0.86%MET組顯著高於0.17%MET組,而運動組顯著低於非運動組。在骨代謝的血液分析方面,本研究分別測量骨鈣素 (osteocalcin)及第一型膠原羧基端肽(C-telopeptide fragments of collagen type 1, CTX-1)分別代表骨生成指標及骨吸收指標,此外,本研究亦分析血中類胰島素生長因子-1 (insulin-like growth factor-1, IGF-1)及類胰島素生長因子連結蛋白-3(insulin-like growth factor binding protein-3, IGFBP-3)以作為發展與老化指標之用,結果顯示,各項指標均在MET或EXE之主要效果呈現顯著水準,亦有部份指標在交互作用達顯著,低蛋胺酸飲食及運動均對上述指標有不同呈度的向下調節作用。在骨靜態組織型態方面,攝食0.17%MET之大鼠在各項海綿骨結構參數較低於0.86%MET組和0.52%MET組,而運動之大鼠則呈現較高於非運動組之骨小樑厚度 (p<.001)及較低於非運動組之破骨細胞數。在動態組織型態分析顯示,骨礦化與生成率方面均為0.17%MET飲食之動物相較於0.86%MET和0.52%MET者顯著較低,另運動組較非運動組低。結構性生物力學部分,0.17%MET飲食者有顯著較低之抗彎曲負荷、抗彎曲能量吸收及硬度,然在材料層次的生物力學特性方面,0.17%MET飲食者之降伏點應力值 (p=.002) 和楊氏係數 (p=.001) 則顯著較高。
    結論:降低40%蛋胺酸含量的低蛋胺酸飲食對於骨骼各方面之影響無異於正常飲食,而降低80%蛋胺酸含量相較之下似乎呈現較差的骨骼型態與結構性生物力學特性,然而,在老化相關的血液指標與骨組織之材料層次生物力學特性方面,低蛋胺酸飲食則呈現其優勢,此外,若分別佐與運動,則對部份參數亦有助益。

    Abstract
    Purpose: To investigate the effects of low methionine (MET) diets and endurance exercise (EXE) on bone metabolism, histomorphometry and biomaterial properties in growing male rats.
    Methods: Seventy-two male SD rats (7 weeks old) were randomly assigned to six groups, which were the 0.86%MET, 0.52%MET, 0.17%MET, 0.86%MET+EXE, 0.52%MET+EXE and 0.17%MET+EXE groups (n=12 for each). Control animals were fed with a purified diet containing 0.86% methionine. In addition, the 0.52% and 0.17% MET-fed animals were set as the low MET diet groups. For the EXE groups, animals were subjected to treadmill running training by a protocol of 24 m/min, 60 min/day and 5 days/week for 8 weeks. Body weights and food intake of animals were measured twice a week. After the end of eight-week intervention, all animals were sacrificed under deep anesthesia. Samples of blood and bone were collected and stored for serum bone metabolism, histomorphometry and tissue level biomechanical properties analysis. Statistical analysis was processed by using two-way (METEXE)ANOVA (α = .05).
    Results:
    In body weight, main effects of EXE and MET, and interaction all reached significant level (post hoc comparison: the 0.52%MET group> the 0.86%MET group > the 0.17%MET group; and each exercise group was significantly lower than its parallel non-exercise group). In serum marker assays, we measured osteocalcin, CTX-1, IGF-1 and IGFBP-3 as indexes of bone metabolism and development/aging related markers. Significance of MET main effects, EXE main effects or interaction were shown, respectively, in those serum markers. Low-MET diet and exercise show different down-regulated effects on those markers. In histomorphometry, the main effect analysis of MET showed that BVTV and trabecular number were significantly lower in the 0.17%MET-fed rats. And, trabecular separation of the 0.17%MET rats was significantly higher than that of the 0.86%MET and 0.52%MET rats. Additionally, in the main effect of EXE, the exercise-trained rats were higher and lower than the non-EXE rats in trabecular thickness and osteoclast number, respectively. In dynamic histology analysis, the 0.17%MET rats showed significantly lower bone formation (MS/BS and BFR/BS) compared to the 0.86%MET and 0.52%MET rats. And, the exercise-trained rats showed lower MS/BS and BFR/BS as compared to the non-exercise rats. In biomaterial properties, femora of the 0.17%MET rats were significant lower in fracture load, yield load, stiffness and post-yield energy as compared to the 0.86%MET and 0.52%MET rats. Conversely, the 0.17%MET rats revealed significant increase in yield stress and Young’s modulus.
    Conclusion:
    There was no negative effect of the 40% methionine reduction on bone metabolism, histomorphometry and biomaterial properties. It seemed that the 80% methionine diet caused an inferior architecture in spongy bone and a decreased structural strength in cortical bone. However, in aging-related serum markers and material level biomechanical properties, low-MET diet shown its benefit. And, endurance exercise intervention showed modifications for parameters investigated in the current study.

    摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧I Abstract‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II 第壹章 緒論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 一、 問題背景‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 二、 研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3 三、 研究重要性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3 四、 操作型定義‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4 第貳章 文獻探討‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5 一、 熱量限制飲食對骨骼之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5 二、 低蛋胺酸飲食對骨骼之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧7 三、 耐力運動對骨骼之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧8 四、 總結‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9 第參章 研究方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10 一、 實驗動物‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10 二、 實驗設計‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10 三、 實驗流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11 四、 體重及飲食‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11 五、 血液樣本收集與分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11 六、 靜態組織學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12 七、 動態組織學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13 八、 生物力學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧14 九、 統計方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧15 第肆章 結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧16 一、 身體質量‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧16 二、 血液指標‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧17 三、 靜態組織學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19 四、 動態組織學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21 五、 生物力學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23 第伍章 討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26 一、 身體質量與飲食量參數‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26 二、 血液指標數據‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27 三、 靜態組織學參數分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29 四、 動態組織學數據分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧31 五、 生物力學分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33 六、 結論與建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35 參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36

    Ammann, P., Bourrin, S., Bonjour, J. P., Meyer, J. M., & Rizzoli, R. (2000). Protein Undernutrition Induced Bone Loss Is Associated with Decreased IGF I Levels and Estrogen Deficiency. Journal of Bone and Mineral Research, 15(4), 683-690.
    Ammann, P., Rizzoli, R., Meyer, J. M., & Bonjour, J. P. (1996). Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporosis international, 6(3), 219-227.
    Ammann, P., Rizzoli, R., Muller, K., Slosman, D., & Bonjour, J. P. (1993). IGF-I and pamidronate increase bone mineral density in ovariectomized adult rats. Am J Physiol, 265(5 Pt 1), E770-776.
    Bacon, L., Stern, J. S., Keim, N. L., & Van Loan, M. D. (2004). Low bone mass in premenopausal chronic dieting obese women. Eur J Clin Nutr, 58(6), 966-971.
    Berg, U., & Bang, P. (2004). Exercise and circulating insulin-like growth factor I. Horm Res, 62 Suppl 1, 50-58.
    Black, A., Allison, D., Shapses, S., Tilmont, E., Handy, A., Ingram, D., et al. (2001). Calorie Restriction and Skeletal Mass in Rhesus Monkeys (Macaca mulatta). The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), B98.
    Boskey, A., Gadaleta, S., Gundberg, C., Doty, S., Ducy, P., & Karsenty, G. (1998). Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone, 23(3), 187-196.
    Bourrin, S., Toromanoff, A., Ammann, P., Bonjour, J. P., & Rizzoli, R. (2000). Dietary protein deficiency induces osteoporosis in aged male rats. J Bone Miner Res, 15(8), 1555-1563.
    Brahm, H., Piehl-Aulin, K., & Ljunghall, S. (1996). Biochemical markers of bone metabolism during distance running in healthy, regularly exercising men and women. Scand J Med Sci Sports, 6(1), 26-30.
    Bray, G. A. (1987). Overweight is risking fate. Definition, classification, prevalence, and risks. Ann N Y Acad Sci, 499, 14-28.
    Brennan-Speranza, T. C., Rizzoli, R., Kream, B. E., Rosen, C., & Ammann, P. (2011). Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone.
    Brochmann, E. J., Duarte, M. E., Zaidi, H. A., & Murray, S. S. (2003). Effects of dietary restriction on total body, femoral, and vertebral bone in SENCAR, C57BL/6, and DBA/2 mice. Metabolism, 52(10), 1265-1273.
    Brooke-Wavell, K., & Stensel, D. J. (2008). Exercise and children's bone health. J Fam Health Care, 18(6), 205-208.
    Canalis, E., Rydziel, S., Delany, A. M., Varghese, S., & Jeffrey, J. J. (1995). Insulin-like growth factors inhibit interstitial collagenase synthesis in bone cell cultures. Endocrinology, 136(4), 1348-1354.
    Chevalley, T., Rizzoli, R., Manen, D., Caverzasio, J., & Bonjour, J. P. (1998). Arginine increases insulin-like growth factor-I production and collagen synthesis in osteoblast-like cells. Bone, 23(2), 103-109.
    Clemmons, D. R., & Underwood, L. E. (1991). Nutritional regulation of IGF-I and IGF binding proteins. Annu Rev Nutr, 11, 393-412.
    Cortright, R. N., Chandler, M. P., Lemon, P. W. R., & DiCarlo, S. E. (1997). Daily exercise reduces fat, protein and body mass in male but not female rats. Physiology & behavior, 62(1), 105-111.
    De Marte, M. L., & Enesco, H. E. (1986). Influence of low tryptophan diet on survival and organ growth in mice. Mech Ageing Dev, 36(2), 161-171.
    Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., et al. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res, 25(9), 2078-2088.
    Ehrlich, P. J., & Lanyon, L. E. (2002). Mechanical strain and bone cell function: a review. Osteoporos Int, 13(9), 688-700.
    Eliakim, A., Brasel, J. A., Mohan, S., Wong, W. L., & Cooper, D. M. (1998). Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am J Physiol, 275(1 Pt 2), R308-314.
    Engelke, K., Kemmler, W., Lauber, D., Beeskow, C., Pintag, R., & Kalender, W. (2006). Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporosis international, 17(1), 133-142.
    Fairey, A., Courneya, K., Field, C., Bell, G., Jones, L., & Mackey, J. (2003). Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors. Cancer Epidemiology Biomarkers & Prevention, 12(8), 721.
    Fernandez-Real, J. M., Izquierdo, M., Ortega, F., Gorostiaga, E., Gomez-Ambrosi, J., Moreno-Navarrete, J. M., et al. (2009). The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab, 94(1), 237-245.
    Frost, H. M. (1988). Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int, 42(3), 145-156.
    Fujimura, R., Ashizawa, N., Watanabe, M., Mukai, N., Amagai, H., Fukubayashi, T., et al. (1997). Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. J Bone Miner Res, 12(4), 656-662.
    Grinspoon, S. K., Baum, H. B., Peterson, S., & Klibanski, A. (1995). Effects of rhIGF-I administration on bone turnover during short-term fasting. J Clin Invest, 96(2), 900-906.
    Gudbrandsen, O. A., Wergedahl, H., Liaset, B., Espe, M., & Berge, R. K. (2005). Dietary proteins with high isoflavone content or low methionine-glycine and lysine-arginine ratios are hypocholesterolaemic and lower the plasma homocysteine level in male Zucker fa/fa rats. Br J Nutr, 94(3), 321-330.
    Hamrick, M. W., Ding, K. H., Ponnala, S., Ferrari, S. L., & Isales, C. M. (2008). Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res, 23(6), 870-878.
    Hamrick, M. W., Pennington, C., Newton, D., Xie, D., & Isales, C. (2004). Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone, 34(3), 376-383.
    Hawrylewicz, E. J., Zapata, J. J., & Blair, W. H. (1995). Soy and experimental cancer: animal studies. J Nutr, 125(3 Suppl), 698S-708S.
    Heilbronn, L. K., & Ravussin, E. (2003). Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr, 78(3), 361-369.
    Herrmann, M., Muller, M., Scharhag, J., Sand-Hill, M., Kindermann, W., & Herrmann, W. (2007). The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clin Chem Lab Med, 45(10), 1381-1389.
    Hochstenbach-Waelen, A., Veldhorst, M. A., Nieuwenhuizen, A. G., Westerterp-Plantenga, M. S., & Westerterp, K. R. (2009). Comparison of 2 diets with either 25% or 10% of energy as casein on energy expenditure, substrate balance, and appetite profile. Am J Clin Nutr, 89(3), 831-838.
    Holy, X., & Zerath, E. (2000). Bone mass increases in less than 4 wk of voluntary exercising in growing rats. Medicine & Science in Sports & Exercise, 32(9), 1562.
    Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. J Bone Miner Metab, 26(4), 350-357.
    Huang, T. H., Hsieh, S. S., Liu, S. H., Chang, F. L., Lin, S. C., & Yang, R. S. (2010). Swimming training increases the post-yield energy of bone in young male rats. Calcif Tissue Int, 86(2), 142-153.
    Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol, 95(1), 300-307.
    Huang, T. H., Yang, R. S., Hsieh, S. S., & Liu, S. H. (2002). Effects of caffeine and exercise on the development of bone: a densitometric and histomorphometric study in young Wistar rats. Bone, 30(1), 293-299.
    Hursting, S. D., Lavigne, J. A., Berrigan, D., Perkins, S. N., & Barrett, J. C. (2003). Calorie Restriction, Aging, and Cancer Prevention: Mechanisms of Action and Applicability to Humans*. Annual review of medicine, 54(1), 131-152.
    Ingram, R. T., Park, Y. K., Clarke, B. L., & Fitzpatrick, L. A. (1994). Age-and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling. Journal of Clinical Investigation, 93(3), 989.
    Isley, W., Underwood, L., & Clemmons, D. (1983). Dietary components that regulate serum somatomedin-C concentrations in humans. Journal of Clinical Investigation, 71(2), 175.
    Iwamoto, J., Sato, Y., Takeda, T., & Matsumoto, H. (2009). Role of sport and exercise in the maintenance of female bone health. J Bone Miner Metab, 27(5), 530-537.
    Iwamoto, J., Seki, A., Sato, Y., Matsumoto, H., Takeda, T., & Yeh, J. K. (2011). Effect of vitamin K2 on cortical and cancellous bone mass and hepatic lipids in rats with combined methionine-choline deficiency. Bone, 48(5), 1015-1021.
    Iwaniec, U. T., Dube, M. G., Boghossian, S., Song, H., Helferich, W. G., Turner, R. T., et al. (2009). Body mass influences cortical bone mass independent of leptin signaling. Bone, 44(3), 404-412.
    Janssen, J. A., & Lamberts, S. W. (2004). Igf-I and longevity. Horm Res, 62 Suppl 3, 104-109.
    Jensen, L. B., Quaade, F., & Sorensen, O. H. (1994). Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res, 9(4), 459-463.
    Jesudason, D., & Clifton, P. (2011). The interaction between dietary protein and bone health. Journal of bone and mineral metabolism, 1-14.
    Joshi, R. N., Safadi, F. F., Barbe, M. F., Del Carpio-Cano, F., Popoff, S. N., & Yingling, V. R. (2011). Different effects on bone strength and cell differentiation in pre pubertal caloric restriction versus hypothalamic suppression. Bone.
    Key, T. J., Appleby, P. N., Reeves, G. K., & Roddam, A. W. (2010). Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol, 11(6), 530-542.
    l'Allemand, D., Schmidt, S., Rousson, V., Brabant, G., Gasser, T., & Gruters, A. (2002). Associations between body mass, leptin, IGF-I and circulating adrenal androgens in children with obesity and premature adrenarche. Eur J Endocrinol, 146(4), 537-543.
    Lambert, J., Lamothe, J. M., Zernicke, R. F., Auer, R. N., & Reimer, R. A. (2005b). Dietary restriction does not adversely affect bone geometry and mechanics in rapidly growing male wistar rats. Pediatric research, 57(2), 227.
    LaMothe, J. M., Hepple, R. T., & Zernicke, R. F. (2003). Selected contribution: Bone adaptation with aging and long-term caloric restriction in Fischer 344 x Brown-Norway F1-hybrid rats. J Appl Physiol, 95(4), 1739-1745.
    Lopez-Torres, M., & Barja, G. (2008). Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction:: Possible implications for humans. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(11), 1337-1347.
    Malloy, V. L., Krajcik, R. A., Bailey, S. J., Hristopoulos, G., Plummer, J. D., & Orentreich, N. (2006). Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging cell, 5(4), 305-314.
    Manson, J. E., & Bassuk, S. S. (2003). Obesity in the United States: a fresh look at its high toll. JAMA, 289(2), 229-230.
    Manson, J. E., Willett, W. C., Stampfer, M. J., Colditz, G. A., Hunter, D. J., Hankinson, S. E., et al. (1995). Body weight and mortality among women. N Engl J Med, 333(11), 677-685.
    Mardon, J., Zangarelli, A., Walrand, S., Davicco, M. J., Lebecque, P., Demigne, C., et al. (2008). Impact of energy and casein or whey protein intake on bone status in a rat model of age-related bone loss. Br J Nutr, 99(4), 764-772.
    Mattison, J. A., Lane, M. A., Roth, G. S., & Ingram, D. K. (2003). Calorie restriction in rhesus monkeys. Exp Gerontol, 38(1-2), 35-46.
    McCarty, M. (2003). A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process. Medical Hypotheses, 60(6), 784-792.
    McCarty, M., Barroso-Aranda, J., & Contreras, F. (2009). The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses, 72(2), 125¡V128.
    McCay, C. M., Crowell, M. F., & Maynard, L. A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 5(3), 155-171; discussion 172.
    Miller, R., Buehner, G., Chang, Y., Harper, J., Sigler, R., & Smith Wheelock, M. (2005). Methionine deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell, 4(3), 119-125.
    Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with overweight and obesity. JAMA, 282(16), 1523-1529.
    Notomi, T., Okazaki, Y., Okimoto, N., Saitoh, S., Nakamura, T., & Suzuki, M. (2000). A comparison of resistance and aerobic training for mass, strength and turnover of bone in growing rats. Eur J Appl Physiol, 83(6), 469-474.
    Ooka, H., Segall, P. E., & Timiras, P. S. (1988). Histology and survival in age-delayed low-tryptophan-fed rats. Mech Ageing Dev, 43(1), 79-98.
    Orentreich, N., Matias, J. R., DeFelice, A., & Zimmerman, J. A. (1993). Low methionine ingestion by rats extends life span. J Nutr, 123(2), 269-274.
    Pajamaki, I., Kannus, P., Vuohelainen, T., Sievanen, H., Tuukkanen, J., Jarvinen, M., et al. (2003). The Bone Gain Induced by Exercise in Puberty Is Not Preserved Through a Virtually Life Long Deconditioning: A Randomized Controlled Experimental Study in Male Rats. Journal of Bone and Mineral Research, 18(3), 544-552.
    Parvin, R., Mandal, A. B., Singh, S. M., & Thakur, R. (2010). Effect of dietary level of methionine on growth performance and immune response in Japanese quails (Coturnix coturnix japonica). J Sci Food Agric, 90(3), 471-481.
    Passadore, M. D., Griggio, M. A., Nunes, M. T., & Luz, J. (2004). Effects of ageing on the energy balance of food-restricted rats. Acta Physiol Scand, 181(2), 193-198.
    Pendergrass, W. R., Li, Y., Jiang, D., Fei, R. G., & Wolf, N. S. (1995). Caloric restriction: conservation of cellular replicative capacity in vitro accompanies life-span extension in mice. Exp Cell Res, 217(2), 309-316.
    Price, J. S., Oyajobi, B. O., Oreffo, R. O., & Russell, R. G. (1994). Cells cultured from the growing tip of red deer antler express alkaline phosphatase and proliferate in response to insulin-like growth factor-I. J Endocrinol, 143(2), R9-16.
    Puustjarvi, K., Nieminen, J., Rasanen, T., Hyttinen, M., Helminen, H. J., Kroger, H., et al. (1999). Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res, 14(3), 321-329.
    Reed, A. H., McCarty, H. L., Evans, G. L., Turner, R. T., & Westerlind, K. C. (2002). The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats. Alcohol Clin Exp Res, 26(8), 1269-1274.
    Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., & Zimmerman, J. A. (1994). Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J, 8(15), 1302-1307.
    Robinson, T. L., Snow-Harter, C., Taaffe, D. R., Gillis, D., Shaw, J., & Marcus, R. (1995). Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res, 10(1), 26-35.
    Rosendal, L., Langberg, H., Flyvbjerg, A., Frystyk, J., Orskov, H., & Kjar, M. (2002). Physical capacity influences the response of insulin-like growth factor and its binding proteins to training. Journal of Applied Physiology, 93(5), 1669.
    Ryan, A. S., Nicklas, B. J., & Dennis, K. E. (1998). Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J Appl Physiol, 84(4), 1305-1310.
    Sanderson, J. P., Binkley, N., Roecker, E. B., Champ, J. E., Pugh, T. D., Aspnes, L., et al. (1997). Influence of fat intake and caloric restriction on bone in aging male rats. J Gerontol A Biol Sci Med Sci, 52(1), B20-25.
    Sanz, A., Caro, P., & Barja, G. (2004). Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr, 36(6), 545-552.
    Sanz, A., Caro, P., Sanchez, J. G., & Barja, G. (2006). Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage. Ann N Y Acad Sci, 1067, 200-209.
    Sanz, A., Gomez, J., Caro, P., & Barja, G. (2006). Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr, 38(5-6), 327-333.
    Schurch, M. A., Rizzoli, R., Slosman, D., Vadas, L., Vergnaud, P., & Bonjour, J. P. (1998). Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med, 128(10), 801-809.
    Segall, P. E., & Timiras, P. S. (1976). Patho-physiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging. Mech Ageing Dev, 5(2), 109-124.
    Shibata, Y., Ohsawa, I., Watanabe, T., Miura, T., & Sato, Y. (2003). Effects of physical training on bone mineral density and bone metabolism. J Physiol Anthropol Appl Human Sci, 22(4), 203-208.
    Sontag, W. (1986). Quantitative measurements of periosteal and cortical-endosteal bone formation and resorption in the midshaft of male rat femur. Bone, 7(1), 63-70.
    Sukumar, D., Ambia Sobhan, H., Zurfluh, R., Schlussel, Y., Stahl, T. J., Gordon, C. L., et al. (2011). Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: A randomized, controlled trial. Journal of Bone and Mineral Research, 26(6), 1339-1348.
    Takenaka, A., Oki, N., Takahashi, S., & Noguchi, T. (2000). Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-I (IGF-I) but does not affect plasma IGF-binding protein-1 in rats. Journal of Nutrition, 130(12), 2910.
    Talbott, S. M., Cifuentes, M., Dunn, M. G., & Shapses, S. A. (2001). Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr, 131(9), 2382-2387.
    Talbott, S. M., Rothkopf, M. M., & Shapses, S. A. (1998). Dietary restriction of energy and calcium alters bone turnover and density in younger and older female rats. J Nutr, 128(3), 640-645.
    Tamaki, H., Akamine, T., Goshi, N., Kurata, H., & Sakou, T. (1998). Effects of exercise training and etidronate treatment on bone mineral density and trabecular bone in ovariectomized rats. Bone, 23(2), 147-153.
    Tatsumi, S., Ito, M., Asaba, Y., Tsutsumi, K., & Ikeda, K. (2008). Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents. Endocrinology, 149(2), 634-641.
    Thissen, J. P., Davenport, M. L., Pucilowska, J. B., Miles, M. V., & Underwood, L. E. (1992). Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. Am J Physiol, 262(4 Pt 1), E406-411.
    Thissen, J. P., Ketelslegers, J., & Underwood, L. E. (1994). Nutritional regulation of the insulin-like growth factors. Endocrine reviews, 15(1), 80.
    Thissen, J. P., Ketelslegers, J. M., & Underwood, L. E. (1994). Nutritional regulation of the insulin-like growth factors. Endocr Rev, 15(1), 80-101.
    Thissen, J. P., Underwood, L. E., Maiter, D., Maes, M., Clemmons, D. R., & Ketelslegers, J. (1991). Failure of insulin-like growth factor-I (IGF-I) infusion to promote growth in protein-restricted rats despite normalization of serum IGF-I concentrations. Endocrinology, 128(2), 885.
    Thomsen, J. S., Skalicky, M., & Viidik, A. (2008). Influence of physical exercise and food restriction on the biomechanical properties of the femur of ageing male rats. Gerontology, 54(1), 32-39.
    Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: a tutorial. Bone, 14(4), 595-608.
    Turner, R. T., Evans, G. L., Lotinun, S., Lapke, P. D., Iwaniec, U. T., & Morey-Holton, E. (2007). Dose-response effects of intermittent PTH on cancellous bone in hindlimb unloaded rats. J Bone Miner Res, 22(1), 64-71.
    Villareal, D. T., Fontana, L., Weiss, E. P., Racette, S. B., Steger-May, K., Schechtman, K. B., et al. (2006). Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med, 166(22), 2502-2510.
    Wang, C., Weindruch, R., Fernandez, J. R., Coffey, C. S., Patel, P., & Allison, D. B. (2004). Caloric restriction and body weight independently affect longevity in Wistar rats. Int J Obes Relat Metab Disord, 28(3), 357-362.
    Wang, K., Li, D., & Sun, F. (2004). Dietary caloric restriction may delay the development of cataract by attenuating the oxidative stress in the lenses of Brown Norway rats. Exp Eye Res, 78(1), 151-158.
    Wang, L., Banu, J., McMahan, C. A., & Kalu, D. N. (2001). Male rodent model of age-related bone loss in men. Bone, 29(2), 141-148.
    Warden, S. J., Fuchs, R. K., Castillo, A. B., Nelson, I. R., & Turner, C. H. (2007). Exercise when young provides lifelong benefits to bone structure and strength. Journal of Bone and Mineral Research, 22(2), 251-259.
    Weindruch, R., & Sohal, R. S. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med, 337(14), 986-994.
    Westerbeek, Z. W., Hepple, R. T., & Zernicke, R. F. (2008). Effects of aging and caloric restriction on bone structure and mechanical properties. J Gerontol A Biol Sci Med Sci, 63(11), 1131-1136.
    Wright, K. R., & McMillan, P. J. (1994). Osteoclast recruitment and modulation by calcium deficiency, fasting, and calcium supplementation in the rat. Calcif Tissue Int, 54(1), 62-68.
    Young, D., Hopper, J., Macinnis, R., Nowson, C., Hoang, N., & Wark, J. (2001). Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twins. Osteoporosis international, 12(6), 506-515.
    Yu, B. P., & Chung, H. Y. (2001). Stress resistance by caloric restriction for longevity. Ann N Y Acad Sci, 928, 39-47.
    Zanker, C. L., & Swaine, I. L. (2000). Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. European journal of applied physiology, 83(4), 434-440.
    Zhao, G., Monier-Faugere, M. C., Langub, M. C., Geng, Z., Nakayama, T., Pike, J., et al. (2000). Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology, 141(7), 2674.
    Zimmerman, J. A., Malloy, V., Krajcik, R., & Orentreich, N. (2003). Nutritional control of aging. Exp Gerontol, 38(1-2), 47-52.
    Zonderland, M. L., Bar, P. R., Reijneveld, J. C., Spruijt, B. M., Keizer, H. A., & Glatz, J. F. (1999). Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat. Eur J Appl Physiol Occup Physiol, 79(5), 391-396.
    張馨文. (2011). 耐力訓練與低蛋胺酸飲食對成長中大鼠骨骼肌的影響:胰島素/類胰島素生長因子-1軸、有氧代謝與氧化壓力之關連性探討. 未出版碩士論文(國立成功大學體育健康與休閒研究所).

    下載圖示 校內:2012-09-05公開
    校外:2012-09-05公開
    QR CODE