簡易檢索 / 詳目顯示

研究生: 鄭卉妤
Jheng, Huei-Yu
論文名稱: 建築設計初期階段碳足跡評估工具之開發
A Tool for The Early Stage Carbon Footprint in Building Design
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 參數建築初期階段設計二氧化碳建築生命週期
外文關鍵詞: Parameter, Architectural Early Design Stage, Carbon dioxide, LCA
相關次數: 點閱:76下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2021年,國際能源署也公布全球建築產業佔最終總能耗的36%,佔總二氧化碳(CO2)排放量的37%,其中10%來自於建築材料,例如鋼鐵,水泥和玻璃。2015年,聯合國通過《巴黎氣候協議》,強調「2050年達到淨零碳排」,而台灣也因而訂定《溫室氣體減量管理法》。但台灣對於建築的碳排計算環節依然被用作設計後評估,或是可持續性認證的一部分。如果生命週期碳排計算可以在建築設計過程的早期階段就做出的相對性的最佳方案,將為建築後續階段省下相當多的時間或是金錢成本。

    綜上所述本研究目的在於建構建築碳足跡運算數位工具與設計流程,來改變目前台灣碳排運算處於用後評估的現狀,並讓環境影響評估中碳排與能耗這兩項因素可以被一併納入建築設計初期考量因素之中,透過碳排計算公具與最佳化工具的串接可同時比較多方案在碳排與能耗中的相對優劣性,從中協助設計工作者更快的做出設計決策,各方案除了建築面積、座向與量體高度外也可更進一步借由調整外遮陽深度與窗牆比等因素獲得更低碳排量的建築設計方案。

    目前工具內採用的計算公式除了包含BCF法計算公式外,也將綠建築手冊-基本型中碳排計算公式的平面係數一同整併入公式中,並採用「2018年科技部補助專題研究計畫成果報告中針對建築設計變因對結構體碳排放量影響之探討與碳排簡算公式之發展」的研究內容對整體結構碳排公式做更進一步的修正,而工具中所使用的碳排資料源自於LCBA碳排資料庫,建築耗能計算則採用EnergyPlus來替代動態EUI查表數值,使工具的計算可以達到自動化的串接,也將採用辦公大樓來做為此工具介入設計流程的操作示範。將此碳排計算工具與多目的最佳化進行掛接,並且示範性操作BIPV與視野百分比和最低碳排計算等多目的設計操作。

    In 2021, the International Energy Agency also announced that the global building industry will account for 36% of total final energy consumption and 37% of total carbon dioxide (CO2) emissions, 10% of which comes from building materials such as steel, cement and glass. In 2015, the United Nations adopted the "Paris Agreement", emphasizing "net-zero carbon emissions by 2050", and Taiwan also enacted the "Greenhouse Gas Reduction Management Law". But Taiwan's carbon calculations for buildings are still used as part of post-design assessments, or as part of sustainability certification. If the life cycle carbon calculation can be made relatively optimal in the early stages of the building design process, it will save considerable time or money in the later stages of the building.

    In summary, the purpose of this research is to construct a digital tool and design process for building carbon footprint calculation, to change the current status of Taiwan's carbon emissions calculation in post-use assessment, and to allow the two factors of carbon emissions and energy consumption in environmental impact assessment to be used as a reference. It is also included in the initial consideration of building design. Through the connection of carbon emission calculation tools and optimization tools, the relative pros and cons of multiple schemes in carbon emission and energy consumption can be compared at the same time, thereby helping designers to quickly When making design decisions, in addition to building area, seating orientation and body height, each scheme can also further obtain building design schemes with lower carbon emissions by adjusting factors such as external shading depth and window-to-wall ratio.

    摘要 I 謝誌 XX 目錄 XXII 圖目錄 XXV 表目錄 XXVII 第一章緒論 1 1-1 前言與研究背景 1 1-1-1 前言 1 1-1-2 研究趨勢與背景 5 1-2 研究動機與目的 5 1-2-1 研究動機 5 1-2-2 研究目的 6 1-2-3 預期成果 7 1-3 研究範圍與流程 8 1-3-1 研究範圍 8 1-3-2 研究流程 9 第二章 文獻回顧與相關理論 11 2-1 現有碳足跡評估理論 11 2-1-1 建築生命週期碳評估定義 11 2-1-2 建築碳評估定義 12 2-1-3 EEWH之CO2減量指標評估法 15 2-1-4 台灣環保署的建築物CFP-PCR與LCBA的BCF法差異 20 2-2 參數化碳足跡工具 21 2-2-1 參數化軟體的介面設計 21 2-2-2 參數化計算的比較與分析 23 2-2-3 BIM-LCA研究趨勢 25 2-2-4 BIM-LCA計算方式與工具選擇 26 2-2-5 建築碳排計算與多目的最佳化組合應用 28 2-2-6 小結 29 第三章 研究方法 31 3-1 碳足跡工具之系統建構 31 3-1-1 BCF法公式修正 32 3-1-2 LCBA碳足跡資料庫的說明 35 3-1-3 EnergyPlus取代動態EUI 36 3-2 碳足跡工具之平台工具架構 41 3-2-1 整合平台 41 3-2-2 建築性能分析軟體 42 3-2-3 氣象資料的使用 43 3-2-4 工具平台的使用 44 3-2-5 碳排計算工具架構 44 3-2-6 基因演算法軟體 45 3-3 操作流程與使用者介面 47 3-3-1 工具操作建築設計範圍 47 3-3-2 流程與介面設計 48 第四章 碳排工具的開發 51 4-1 工具實際操作 51 4-1-1 使用者介面 51 4-1-2 模型假設數值 51 4-1-3 DOE模型驗證 54 4-2 設計操作測試 55 4-2-1 單棟與多棟方案計算測試 55 4-2-2 建築座向測試 58 4-2-3 目前工具所涵蓋設計操作因子 60 4-2-4 最佳化操作測試 62 第五章 碳排工具的設計應用 65 5-1 案例操作 65 5-2 設計方案碳排數值比較 67 5-2-1 設計手法 67 5-2-2 設計流程 68 5-2-3 方案設計 70 5-2-4 計算結果分析 75 5-3 無太陽能板發電的最佳化方案 79 5-3-1 設計操作 79 5-3-2 計算結果 79 5-3-3 最佳化結果模型 81 5-4 視野百分比最大的減碳方案 83 5-4-1 設計操作 83 5-4-2 計算結果分析 86 第六章 結論與建議 93 6-1結論 93 6-1-1 第一階段: 工具開發 93 6-1-2 第二階段: 工具操作 93 6-2建議 94 附件一 碳排工具的內含參數 95 附件二 碳排設計過程資料 97 附件三 參考案例圖面 111 參考文獻 115 (一)中文文獻 115 (二)英文文獻 115

    (一)中文文獻
    1. 內政部. (2018). 住商部門溫室氣體排放管制. 擷取自 住商部門溫室氣體排放制:https://ghgrule.epa.gov.tw/admin/resource/files/04%E4%BD%8F%E5%95%86%E9%83%A8%E9%96%80%E6%BA%AB%E5%AE%A4%E6%B0%A3%E9%AB%94%E6%8E%92%E6%94%BE%E7%AE%A1%E5%88%B6%E8%A1%8C%E5%8B%95%E6%96%B9%E6%A1%88(%E6%A0%B8%E5%AE%9A%E6%9C%AC).pdf
    2. 田中俊六, & 武田仁. (2006). 最新建築環境工學. 六合出版社.
    3. 行政院環保署. (2021). 國家溫室氣體排放清冊報告.
    4. 低碳聯盟. (2020). https://www.lcba.org.tw/
    5. 呂啟銘. (2015). 應用於BIM於建築設計階段之碳足跡模擬計算工具. 國立成功大學建築研究所碩士論文.
    4. 杜怡萱. (2013). 內政部建築研究所委託研究報告:建築物設計階段碳揭露標示法之研究(2)-建築物軀體、空調、水電工程碳排放量評估法之研究.
    5. 林憲德. (2018). 建築產業碳足跡:建築、景觀、室內裝修的碳管理策略(三版). 詹氏書局.
    6. 林憲德. (2021, 6). 新建非住宅能效評估與標示系統之研究.
    7. 建築產業碳足跡服務台. (2020). 擷取自 http://cfp.twnict.com/
    8. 建築產業碳足跡服務平台. (2020). Retrieved from B-LCC資料庫: http://cfp.twnict.com/article_list/view_article_detail/?id=103
    9. 美國能源局. (2019). https://www.energycodes.gov/prototype-building- models
    10. 國家發展委員會. (2022年3月). 臺灣2050淨零排放路徑及策略總說明. 擷取自臺灣2050淨零排放路徑及策略總說明: https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811
    11. 張又升. (2002年6月). 建築物生命週期二氧化碳減量評估. 成功大學建築系博士論文.
    12. 陳柏睿. (2019). 建築性能分析軟體應用於建築設計教育之成效評估. 成功大學碩士論文.
    13. 黃瑞隆. (2020). 內政部建築研究所創新循環綠建築環境科技計畫及智慧化居住空間整合應用人工智慧科技發展推廣計畫協同研究計畫. 內政部建築研究所.
    14. 楊錦懷,陳志明. (2011). 太陽能節能玻璃發電與節能強化技術. 台灣科技大學碩士論文.
    15. 經濟部能源局. (2020). 109年度我國燃料燃燒二氧化碳排放統計與分析.
    16. 109年度我國燃料燃燒二氧化碳排放統計與分析:https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx
    17. 綠建築評估手冊BC. (2019). 內政部建築研究所.
    18. 環保署. (2022). https://cfpcalculate.tw/cfpc/Carbon/WebPage/FLPCRDoneList.aspx

    (二) 英文文獻
    1. Agustí-Juan, Hollberg.A, & G Habert. (2018). Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision: Proceedings of the Sixth International Symposium on Life-Cycle Civil. Belgium: CRC Press.
    2. B. C.Paulson. (1976). Designing to Reduce Construction Costs. ournal of the Construction.
    3. ChangS.Y. (2002). Life cycle assessment on the reduction of carbon dioxide emission of buildings. Chenggong University: Tainan, Taiwan.
    4. ElkeMeexa, Alexande, rHollberg, ElkeKnapenaLind, Hildebrand, & GrietVerbeeck. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, pp. 228-236.
    5. GabrieleLobaccaroa, AoifeHoulihan, WibergaGiulia, CecibMattia, MannibcNicola, LollidUmberto, & Berardie. (2018). Parametric design to minimize the embodied GHG emissions in a ZEB. Energy and Buildings, pp. Volume 167, 15 May 2018, Pages 106-123.
    6. IEA. (2021). Global energy-related CO2 emissions ,IEA, Paris. https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-1990-2021
    7. IPCC. (2022). The Working Group II contribution to the IPCC Sixth Assessment Report. Intergovernmental Panel on Climate Change: https://www.ipcc.ch/
    8. ISO14040. (2006). Environmental management Life cycle assessment Principles and framework.
    9. KavehSafari, & AzariJafariHessam. (2021). Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. Sustainable Cities and Society, p.67-80.
    10. Net Zero Tracker. (2022). The Energy & Climate Intelligence Unit, Data-Driven EnviroLab, NewClimate Institute and Oxford Net Zero: https://zerotracker.net/
    11. ObrechtPotrcTajda, RöckMartin, & HoxhaEndrit. (2020). BIM and LCA Integration: A Systematic;Alexander Passer. sustainability.
    12. Patrick, M., Kannan, S. , & Baskar, S. (2007). Application of NSGA-II Algorithm to Single-Objective Transmission Constrained Generation Expansion Planning. Power Systems, IEEE Transactions on 24(4):1790 - 1797.
    13. Ramsden, Keeling, Shepherd, Shea, Sharma, & S. (2005). SmartBuildingAnalyser: A parametric earlystage analysis tool for multi-objective building design. CIBSE Technical Symposium, London, UK United Kingdom.
    14. SafariKaveh, & AzariJafariHessam. (2021). Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. Sustainable Cities and Society.
    15. UNEP. (2020). UN Environment Programme-The Global Alliance for Buildings and Construction (GlobalABC). The Global Status Report for Buildings and Construction is a reference document of the Global Alliance for Buildings and Construction (GlobalABC): https://globalabc.org/news/launched-2020-global-status-report-buildings-and-construction
    16. UNFCCC. (2022). United Nations Framework Convention on Climate Change. Race To Zero Campaign: https://unfccc.int/climate-action/race-to-zero-campaign#eq-4
    17. ZhangYan, XuemeiBai, FranklinP.Mills, & JohnC.V.Pezzey. (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings, pp. 279-294.
    18. Attia, S., Hamdy, M., O’Brien, W., & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings, 60, 110-124.
    19. Basic, S., Hollberg, A., Galimshina, A., & Habert, G. (2019, August). A design integrated parametric tool for real-time Life Cycle Assessment–Bombyx project. In IOP Conference Series: Earth and Environmental Science (Vol. 323, No. 1, p. 012112). IOP Publishing.
    20. Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and sustainable energy reviews, 22, 230-245.
    21. Finith, E. (2008). Big BIM little BIM: the practical approach to Building Information Modeling integrated practice done the right way!.
    22. Flórez-Orrego, D., Arias, W., López, D., & Velásquez, H. (2012, June). Experimental and CFD study of a single phase cone-shaped helical coiled heat exchanger: an empirical correlation. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (pp. 375-394).
    23. Grierson, D. E. (2008). Pareto multi-criteria decision making. Advanced Engineering Informatics, 22(3), 371-384.
    24. Hensen, J. L., & Lamberts, R. (Eds.). (2012). Building performance simulation for design and operation. Routledge.
    25. Hermund, A. (2011). Anvendt 3D modellering og parametrisk formgivning.
    26. Hopfe, C. J. (2009). Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization. Eindhoven University of Technology, Eindhoven, 215.
    27. Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. Solar Energy, 125, 161-179.
    28. Nguyen, A. T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043-1058.
    29. Attia S. (2012). Computational optimisation for Zero Energy Building Design Interview with Twenty Eight International Expats. International Energy Agency (IEA) Task 40: Net zero Energy Buildings Subtask B.
    30. AIA . (1995). Document D200:Project Checklist.
    31. AIA. (2012). AIA-Energy-Guide.
    32. Attia S., Jan L.M. Hensenb., Liliana B., De Herde A. (2012). Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation. Vol. 5, No. 3, May 2012, 155–169.
    33. Clarke J.A., Hensen J.L.M. (2015). Integrated building performance simulation: Progress, prospects and requirements. Building and Environment 91(2015) 294-306.
    34. de Wilde P. (2018). Building Performance Analysis. John Wiley & Sons Ltd.
    35. Delbin S., Vanessa G.D. Silva., Doris C.C. K.Kowaltowski., Lucila C. Labaki. (2006). Implementing building energy simulation into the design process: A teaching experience in Brazil. PLEA2006 - The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6-8 September.
    36. Davis, Gregory A. (2002). Using a Retrospective Pre-Post Questionnaire To Determine Program Impact. Meeting Papers. Annual Meeting of the Mid-Western Educational Research Association.
    37. Danley W.E. & Baker C. (2008). Comparing a Pre-Service Mainstreaming Class Taught by Traditional Methods with a Similar Class Taught by Computer-Assisted Instruction. Computers in the Schools, Interdisciplinary Journal of Practice, Theory, and Applied Research, Vol 5, 1998 Issue 1-2.
    38. Fumo N. (2014). A review on the basics of building energy estimation. Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    39. Göçer Ö., Sokol D. (2015). The Use of Building Performance Simulation Tools in Undergraduate Program Course Training. Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9.
    40. Guzowski M. (2013). Time and Adaptive Comfort Studies: Luminous and Thermal Design for Zero-Energy Architectural Education. International Conference on Adaptation and Movement in Architecture, Toronto, Canada, 10‐12 October.

    下載圖示 校內:2023-07-17公開
    校外:2023-07-17公開
    QR CODE