簡易檢索 / 詳目顯示

研究生: 許逸惠
Hsu, Yi-Huei
論文名稱: 安通溫泉地下水水氡觀測及地震前兆之研究
Monitoring Groundwater Radon for Earthquake Precursors near Antung, Taiwan
指導教授: 郭明錦
Kuo, Ming-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 地震前兆氡-222地下水池上斷層
外文關鍵詞: earthquake precursors, radon-222, groundwater, the Chihshang fault
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在安通溫泉區內吉祥溫泉農莊(D1井)及安通溫泉飯店(A井),觀測地下水水氡異常下降之地震前兆。在2011年7月12日MW 5.0奇美地震前,吉祥D1井觀測到地下水水氡濃度從背景值752 ± 24 pCi/L降至最低濃度447 ± 18 pCi/L。然而安通A井未觀測到地下水水氡濃度異常下降之變化。
    吉祥D1井自2003年7月起監測至今,以地下水水氡最低濃度異常的門檻值(503 pCi/L)可清楚辨別出四次MW ≥ 5.0之地震前兆(2003年MW 6.8成功、2006年MW 6.0台東、2008年MW 5.2安通及2011年MW 5.0奇美地震)。當MW < 5.0時,地下水水氡異常下降信號易受背景濃度雜訊干擾。應用物理機制分析2011年MW 5.0奇美地震後地下水水氡濃度異常下降數據,進一步能辨別出四次ML ≥ 4.7之地震前兆。以上發生在池上斷層八次地震前兆的觀測數據顯示地下水水氡濃度異常下降大小與地震規模正相關。

    We monitored groundwater-dissolved radon at both well D1 and well A in the Antung hot spring to catch earthquake precursors. Prior to the 2011 MW 5.0 Chimei earthquake, the groundwater’s radon concentration at well D1 decreased from a background level of 752 ± 24 pCi/L to a minimum of 447 ± 18 pCi/L. No precursory changes in the groundwater’s radon concentration were observed at well A precursory to the 2011 MW 5.0 Chimei earthquake.
    Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well prior to the four major earthquakes – (1) 2003 MW = 6.8 Chengkung, (2) 2006 MW = 6.1 Taitung, (3) 2008 MW = 5.4 Antung, and (4) 2011 MW = 5.4 Chimei. Post the 2011 Chimei earthquake, additional recurrent anomalous declines in groundwater radon were observed at well D1 prior to four local earthquakes with ML ≥ 4.7. For earthquakes occurring on the Longitudinal Valley Fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 6 1-3 研究流程 7 第二章 文獻回顧 8 2-1 地球化學流體於地震前兆之應用 8 2-2 地球化學流體於地震前兆之監測實例 11 2-3 地下水水氡於地震前兆之應用 17 2-4 研究區域地質背景 23 2-4-1 花東縱谷與池上斷層 23 2-4-2 安通溫泉區地質背景 25 2-5 研究區域地震背景 30 2-6 安通溫泉地下水水氡濃度異常變化之地震前兆 35 第三章 研究方法 40 3-1 地下水水氡採樣方法 41 3-2 地下水水氡分析原理 43 3-3 實驗室監測地下水水氡品保品管 46 第四章 結果與討論 49 4-1 吉祥D1井及安通A1井監測結果與環境因子之比較 49 4-2 吉祥D1井和安通A1井監測結果之比較 52 4-3 吉祥D1井地下水水氡濃度三階段序列發展 54 4-4 標準化地下水水氡濃度下降值及前兆時間與地震規模之相關性 60 第五章 結論與建議 67 5-1 結論 67 5-2 建議 69 參考文獻 70 附錄A 78

    1.王源、楊昭男、陳文山,經濟部中央地質調查所出版台灣地質圖說明書圖幅第四十八號,1992。
    2.何春蓀,台灣地體構造的演變,中華民國經濟部,1982。
    3.李建成、朱傚祖、安朔葉、胡植慶,台灣東部縱谷斷層的快速潛移特性及地震災害,2004年台灣活動斷層與地震災害研討會論文集,11-18,中華民國九十三年十月,國立成功大學,2004。
    4.吳先琪、張美玲,氣體色層分析,實用儀器分析,2003。
    5.林啟文、張徽正、盧詩丁、石同生、黃文正,台灣活動斷層概論第二版。經濟部中央地質調查所特刊,第十三號,共122頁,2000。
    6.林意琪,應用地下水氡及甲烷觀測地震前兆之研究:海岸山脈南段,中華民國九十九年六月,國立成功大學,2010。
    7.林雨璇,應用地下水水氡、甲烷及乙烷觀測池上斷層地震前兆,中華民國101年六月,國立成功大學,2012。
    8.林純玉,安通溫泉地下水水氡異常下降地震前兆再現性強震之應用研究,中華民國一百年10月,國立成功大學,2011。
    9.范愷軍,地下水水氡濃度異常下降及地震前兆機制之研究:東台灣2003MW 6.8成功地震,中華民國九十三年十月,國立成功大學,2009。
    10.徐鐵良,台灣海岸山脈的利吉混同層,台灣省地質調查所彙刊,第二十五號,87-96,1976。
    11.游明聖,斷層活動所造成之災害-以民國四十年花蓮、台東地震為例,台灣博物,第十五卷,第二期,16-25,中華民國八十五年,1996。
    12.黃盈穎,應用地下水水氡及甲烷觀測池上斷層地震前兆:2011/1/1 - 2011/5/31,中華民國100年六月,國立成功大學,2011。
    13.楊燦堯、宋聖榮、傅慶州、蘇春旭、劉聰桂、陳正宏,活動斷層地球化學監測現況與成果,2004年台灣活動斷層與地震災害研討會論文集, 120-137,中華民國九十三年十月,國立成功大學,2004。
    14.楊燦堯、宋聖榮、陳正宏、劉聰桂,地震前兆之化學性監測。經濟部中央地質調查所,台灣之活斷層與地震災害研討會論文集,89-106 頁,2002。
    15.鄭文菁,地震前兆地下水溶解氣現地揮發機制佐證 –2008年MW 5.4安通地震氡與甲烷濃度異常下降,中華民國100年一月,國立成功大學,2011。
    16.顏宏元,地震前兆研究,2005年臺灣活動斷層與地震災害研討會論文集, 23-36,2005。
    17.Angelier, J., Chu, H.T. and Lee, J.C., Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274, 117-144 (1997).
    18.Angelier, J., Chu, H.T. and Lee, J.C., Hu, J.C., Active faulting and earthquake hazard: The case study of the Chihshang Fault, Taiwan. Journal of Geodynamics, 29, 151-185 (2000).
    19.Brace, W.F., Paulding Jr.B.W. and Scholz, C., Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research, 71, no. 16, 3939–3953 (1966).
    20.Chen, K.H., Toda, S., and Rau, R.-J., A leaping triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. Journal of Geophysical Research, 113, 1-19 (2008).
    21.Clever, H. L., Krypton, Xenon and Radon - Gas Solubilities, Solubility Data Series 2, Pergamon Press, Oxford, UK (1979).
    22.Freyer, K., Treutler, H.C., Dehnert, J. and Nestler, W., Sampling and measurement of Randon-222 in water. Journal of Environmental Radioactivity, 37, 3, 327-337 (1997).
    23.Fountain, J.C. and Jacobi, R.D., Detection of buried faults and fractures using soil gas analysis. Environmental and Engineering Geoscience, 6, 201-208 (2000).
    24.Han, Y.L., Kuo, M.C.T., Fan, K.C., Chiang, C.J. and Lee, Y.P., Radon Distribution in Groundwater of Taiwan. Hydrogeology, 14, 173-179 (2006).
    25.Hauksson, E., Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis. Journal of Geophysical Research, 86, 10, 9397-9410 (1981).
    26.Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y., Ground-water radon anomaly before the Kobe earthquake in Japan. Science, 269, 5220, 60-61 (1995).
    27.Katz, D. L., Handbook of Natural Gas Engineering, McGraw Hill, New 158 York (1959).
    28.Kuo, M.C.T., Fan, K., Kuochen, H. and Chen, W., A mechanism for anomalous decline in radon precursory to an earthquake. Ground Water, 44, 5, 642-647 (2006a).
    29.Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H. and Lee, Y., Anomalous decrease in groundwater radon before the Taiwan M 6.8 Chengkung Earthquake. Journal of Environmental Radioactivity, 88, no. 1, 101-106 (2006b).
    30.Kuo, T., Lin, C., Chang, G., Fan, K., Cheng, W. and Lewis, C., Estimation of aseimic crustal-strain using radon repetitive radon precursors of the 2003 M 6.8, 2006 M 6.1, and 2008 M 5.0 earthquakes in eastern Taiwan. Nat Hazards, 53, 219-228 (2010a).
    31.Kuo, M.C.T., Cheng, W., Lin, C., Fan, K., Chang, G. and Yang, T., Simultaneous declines in radon and methane precursory to 2008 MW 5.0 Antung earthquake: corroboration of in-situ volatilization. Nat Hazards, 54, 367-372 (2010b).
    32.Kuo, T., Lin, C., Su, C., Liu, C., Lin C. H., Chang C and Chiang , C., Correlating recurrent radon precursors with local earthquake magnitude and crust strain near the Chihshang fault of eastern Taiwan. Nat Hazards (2011) 59:861–869 (2011).
    33.Kuo, T., Application of recurrent radon precursor for forecasting local large and moderate earthquake. Earthquake Research and Analysis-Statistical Study, Observation and Planning, 161-178 (2012).
    34.Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C. and Jeng, F.S., Monitoring active fault creep as a tool in seismic hazard mitigation: insights from creepmeter study at Chihshang, Taiwan. Geoscience, 337, 13, 1200-1207 (2005).
    35.Liu, K.K., Yui, T.F., Yeh, Y.H., Tsai, Y.B. and Teng, T., Variations of radon content in ground waters and possible correlation with seismic activities in northern Taiwan. Pure and Applied Geophysics, 122, 231-244 (1985).
    36.Nisith, K.D., Rakesh, K.B., Debasis, G., Prasanta, S. and Bikash, S., Anomalous fluctuation of radon, gamma dose and helium emanating from a thermal spring prior to an earthquake. Science, 89, 8, 1399-1404 (2005).
    37.Prichard, H.M., Venso, E.A. and Dodson, C.L., Liquid-scintillation analysis of 222Rn in water by alpha-beta discrimination. Radioactivity and Radiochemistry, 3, 1, 28-36 (1992).
    38.Scholz, C.H., Sykes, L.R. and Aggarwal, Y.P., Earthquake prediction: A physical basis. Science 181, no.4102, 803-810 (1973).
    39.Senior, L.A. Radon-222 in the ground water of chester county, Pennsylvania. U.S.Department of the Interior, U.S Geological survey, water-resource investigations report, 1-79 (1998).
    40.Silver, P.G. and Wakita, H., A search for earthquake precursors. Science 273, 5271, 77-78 (1996).
    41.Sugisaki, R., Ito, T., Nagamine, K. and Kawabe, I., Gas geochemical changes at mineral springs associated with the 1995 southern Hyogo earthquake (M = 7.2), Japan. Earth and Planetary Science Letters, 139, 239-249 (1996).
    42.Tedesco, D. and Scarsi, P., Chemical He, H2, CH4, Ne, Ar, N2 and isotopic He, Ne, Ar, C variations at the Solfatara crater southern Italy : mixing of different sources in relation to seismic activity. Earth and Planetary Science Letters, 171, 465-480 (1999).
    43.Teng, T., Some recent studies on groundwater randon content as an earthquake Precursor. Journal of Geophysical Research, 85, 3089-3099 (1980).
    44.T. Kuo, C. Liu, C. Su, C. Chang, W. Chen, Y. Chen, C. Lin, H. Kuochen, Y. Hsu, Y.Lin, Y.Huang, H.Lin, Concurrent concentration declines in groundwater-dissolved radon, methane and ethane precursory to 2011 MW 5.0 Chimei earthquake. Radiation Measurements, http://dx.doi.org/10.1016/j.radmeas.2013.04.006 (2013).
    45.Torgersen, T., Benoit, J. and Mackie, D., Controls on groundwater Rn-222 concentrations in fractured rock. Geophysic Research Letters, 17, 6, 845-848 (1990).
    46.Tsunogai, U. and Wakita, H., Precursory chemical changes in ground water: Kobe Earthquake, Japan. Science, 269, 61-63 (1995).
    47.Tsunomori, F. and Kuo, T., A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan. Radiation Measurements, 45, 139-142 (2010).
    48.Verma, M., Bansal, B.K., Review earthquake precursory studies in India:Scenario and future perspectives. Journal of Asian Earth Sciences, http://dx.doi.org/10.1016/j.jseaes.2012.04.003 (2012).
    49.Vivek Walia, Virk, H.S., Bajwa B.S., Radon precursory signals for some earthquake of magnitude >5 occurred in N-W Himalaya: an overview. Pure and Applied Geophysics, 163, 711-721, 2006.
    50.Wakita, H., Igarashi, G. and Notsu, K., An anomalous radon decrease in groundwater prior to an M 6.0 earthquake: A possible precursor?. Geophysic Research Letters, 18, 4, 629-632 (1991).
    51.Yu, S. B. and Kuo, L. C., Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217 (2001).

    下載圖示 校內:2015-07-29公開
    校外:2015-07-29公開
    QR CODE