| 研究生: |
黃柏崴 Huang, Po-Wei |
|---|---|
| 論文名稱: |
利用傾斜式基板法在短時間於銅箔上藉由化學氣相沉積法製備石墨烯薄膜 Preparation graphene films on copper foil by chemical vapor deposition with tilt substrate in short tim |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 化學氣相沉積法 、傾斜式基板法 、石墨烯 |
| 外文關鍵詞: | chemical vapor deposition, tilt substrate, graphene |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從2004年以來,石墨烯已成為材料科學研究方面的新星,由於它優異的導電、導熱性質,可望能運用在微機電、光電產品中,因此石墨烯的品質與性質是非常的重要。在眾多的製備方法中,又以化學氣相沉積法最能製備出大面積的石墨烯,而大面積的石墨烯擁有較優良的導電性質,有利於光電產品應用。在本實驗中,我們採用化學氣相沉積法成長石墨烯,並使用銅做為反應的觸媒基材,來製備高品質的石墨烯,藉由施以不同的傾斜角度5~15度,並通入不同的甲烷濃度0.6、1.2 sccm,30sccm的氫氣與270sccm的氬氣,總流量為300sccm,成長時間0.5min~2min,製備出的石墨烯經過分析,歸納出各參數對於沉積石墨烯的影響。CVD石墨烯主要是由於碳源氣體與銅基材產生裂解反應。然而,反應氣體需跨越邊界層才能與銅基材進行反應,所以擴散過邊界層的速率會大幅影響成長的結果,經過拉曼光譜與光學顯微鏡的分析結果,我們歸納出傾斜角度與甲烷濃度主要影響石墨烯的層數與結構;成長時間主要影響披覆面積,而且並非時間越長披覆面積越高,在我們實驗中1.5分鐘是最恰當的反應時間。根據我們的實驗結果可以證實傾斜式基板法確實可以在短時間內提高披覆率,並歸納出各參數對石墨烯品質與披覆率的影響。
From 2004, graphene has been a new star for the material science. Owing to its excellent electrical and thermal conducting properties, these make it could be used in microelectromechanical system (MEMS) or electo-optical product. Therefore, its quality and property are very important. Among of such many ways to produce graphene, the chemical vapor deposition is the best for getting a large-area graphene. The large area means it has the better electrical conducting that is good for electro-optical product.
In this thesis, chemical vapor deposition (CVD) is adopted for growing graphene with copper as catalyst to produce the high quality graphene. In the experiment, the substrate tilt angle is from 5 to 15. Methane concentration is 0.6 and 1.2 sccm, hydrogen 30sccm, argon 270sccm, and the total flow rate is 300 sccm. The reactive time is 0.5 ~2 min. The mechanism of CVD graphene is major to the pyrolysis reaction between carbon gas and catalyst. However, the gas needs to diffuse across the boundary layer to react, so the diffusion rate would affect the product largely. According the Raman analysis and OM coverage result, we induce that the tilt angle and methane concentration would affect the graphene layers, that is, the thickness. The growing time influences the coverage, but it has the most proper time.
In our thesis, the most suitable reaction time is 1.5min. By our results, it can prove using the tilt substrate can promote the coverage in short time and sum up the efforts of these parameters to graphene’s properties and coverage.
1. Ji Won Suk, et al., <Transfer of CVD Grown Monolayer Graphene onto Arbitrary Substrates.pdf>. ACS NANO, 2011. 5(9): p. 3916-3924.
2. Geim, A. and K. Novoselov, <The rise of graphene.pdf>. NATURE MATERIALS, 2007. 6.
3. J.H.Chen, et al., <Intrinsic and extrinsic performance limits of graphene devices on SiO2.pdf>. Nature Nanotechnology, 2008. 3(4): p. 206.
4. Zhang, Y., et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005. 438(7065): p. 201-4.
5. Özyilmaz, B., et al., Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions. Physical Review Letters, 2007. 99(16).
6. Wu, Y., et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011. 472(7341): p. 74-8.
7. Yin, Z., et al., <Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes.pdf>. American Chemical Sceince NANO, 2010. 4: p. 5263-5268.
8. Arco, L.G.D., et al., <Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics.pdf>. American Chemical Sceince NANO, 2010. 4: p. 2865-2873.
9. Li, X., et al., <Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes.pdf>. Nano Lett, 2009. 9: p. 4359-4363.
10. Wassei, J.K. and R.B. Kaner, <Graphene, a promising transparent conductor.pdf>. materialstoday, 2010. 13.
11. Bae, S., et al., <Roll-to-roll production of 30-inch graphene films for transparent electrodes.pdf>. Nat Nanotechnol, 2010. 5(8): p. 574-8.
12. Dong, X., et al., Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater, 2010. 22(14): p. 1649-53.
13. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-5.
14. Dreyer, D.R., R.S. Ruoff, and C.W. Bielawski, From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed Engl, 2010. 49(49): p. 9336-44.
15. Pierson, H.O., HANDBOOK OF CHEMICAL VAPOR DEPOSITION, 1999.
16. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18).
17. Ojha, R.P., et al., Statistical mechanics of a gas-fluidized particle. Nature, 2004. 427(6974): p. 521-3.
18. Meryl D. Stoller, et al., <Graphene-Based Ultracapacitors.pdf>. Nano Lett, 2008. 8(10): p. 3498-3502.
19. Wu, J., et al., Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 2008. 92(26): p. 263302.
20. Charlier, J.-C., P.C.E.J. Zhu, and A.C. Ferrari, Electron and Phonon Properties of Graphene Their Relationship with Carbon Nanotubes. 2008, Spring-Verlag Berlin Heidelberg.
21. Wallace, P., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634.
22. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308.
23. 黃淑娟, et al., 新碳材時代-從奈米碳管到石墨烯工研院化材所, 2011.
24. Zhang, Y., et al., Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapor Deposition. Phys. Chem. Lett., 2010: p. 3101-3107.
25. Hugh Baker, et al., ASM handbook. 1992.
26. Lee, S., K. Lee, and Z. Zhong, Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett, 2010. 10(11): p. 4702-7.
27. Yu, Q., et al., <Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition.pdf>. NATURE MATERIALS, 2011. 10.
28. Mark P. Levendorf, et al., <Transfer-Free Batch Fabrication of Single Layer Graphene Transistors.pdf>. Nano Lett, 2009. 9(12): p. 4479-4483.
29. Chen, J., et al., A flexible carbon counter electrode for dye-sensitized solar cells. Carbon, 2009. 47(11): p. 2704-2708.
30. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.
31. Wu, M., et al., Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells. Journal of Materials Chemistry, 2011. 21(29): p. 10761.
32. Huang, W., et al., An alternative flexible electrode for dye-sensitized solar cells. Journal of Nanoparticle Research, 2012. 14(4).
33. Veerappan, G., K. Bojan, and S.-W. Rhee, Amorphous carbon as a flexible counter electrode for low cost and efficient dye sensitized solar cell. Renewable Energy, 2012. 41: p. 383-388.
34. Zhao, L., et al., Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Communications, 2011. 151(7): p. 509-513.
35. Bhaviripudi, S., et al., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 2010. 10(10): p. 4128-33.
36. Lee, Y., et al., Wafer-scale synthesis and transfer of graphene films. Nano Lett, 2010. 10(2): p. 490-3.
37. Lee, Y.-H. and J.-H. Lee, Scalable growth of free-standing graphene wafers with copper(Cu) catalyst on SiO[sub 2]/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 2010. 96(8): p. 083101.
38. Reina, A., et al., <Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.pdf>. Nano Lett, 2009. 9: p. 30-35.
39. Cai, W., et al., Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 2009. 95(12): p. 123115.
40. Ferrari, A.C. and J.Rpbertson, <Interpretation of Raman spectra of disordered and amorphous carbon.pdf>. American Physical Society, 2000. 61(20).
41. Allen, M.J., V.C. Tung, and R.B. Kaner, Honeycomb carbon: a review of graphene. Chem Rev, 2010. 110(1): p. 132-45.
校內:2015-08-28公開