| 研究生: |
林憲鴻 Lin, Hsien-Hung |
|---|---|
| 論文名稱: |
脈衝管史特靈引擎之理論分析與最佳化設計 Theoretical Analysis and Optimal Design of a Pulse-Tube Stirling Engine |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsianng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 脈衝管史特靈引擎 、理論模式 、最佳化 、SCGM |
| 外文關鍵詞: | Pulse-Tube Stirling engine, Theoretical model, Optimization, SCGM |
| 相關次數: | 點閱:122 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討脈衝管史特靈引擎的理論模式,包含引擎從啟動至穩定運轉之動態特性,與引擎內部腔室之質量、壓力以及溫度等熱力性質變化,並考慮工作流體在各腔室間流動造成的壓力降與熱傳影響。脈衝管史特靈原型引擎幾何設計參數經參數分析後,發現連接管的管徑與管長、加熱室的鰭片數等參數可進行最佳化,因此本研究利用熱力模式結合多參數最佳化方法,搜尋最佳化參數組合。本研究所使用最佳化方法為簡易共軛梯度法(Simplified conjugate gradient method, SCGM),本法可針對多個設計參數同時進行最佳化搜尋,在固定其他設計參數下,搜尋設計參數組合改善引擎設計,使脈衝管史特靈引擎得以輸出最大的功率。經最佳化後,在常壓空氣、加熱溫度 、引擎轉速1000 rpm時,引擎功率由22.76 W提升至32.56 W,性能提升約43.06%。
This thesis is intended for investigation of theoretical model of the pulse-tube Stirling engine. The model includes dynamic and thermodynamic modules. The properties of dynamic and thermodynamic in each chamber of the engine are predicted. The pressure drop and heat transfer are also considered. The parametric analysis results show that the geometric parameters of the engine have optimal design values, such as the length and diameter of connect tube, the number of fin in the heater. In this study, thermodynamic module is incorporated with simplified conjugate gradient method (SCGM) to optimize three geometric parameters. According to the prediction result after optimization, the power output could increase from 22.76W to 32.56W under 1-atm, 1000C at 1000 rpm of rotation speed, and the performance improvement is 43.06%.
[1]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012.
[2]M. H. Ahmadi, H. Sayyaadi, S. Dehghani, and H. Hosseinzade, "Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power," Energy Conversion and Management, vol. 75, pp. 282-291, 2013.
[3]V. Badescu, "Optimizing of Stirling and Ericsson cycles using solar radiation," Space Power, vol. 11, pp. 99-106, 1992.
[4]G. Walker, "The Stirling engine," Scientific American, vol. 229, 1973.
[5]C. M. Hargreaves, The Phillips stirling engine, 1991.
[6]R. J. Meijer, "Swash-plate drive mechanism," U.S. Patents, No.4030404, 1977.
[7]O. Persson, C. Östberg, J. Pagels, and A. Sebastian, "Air contaminants in a submarine equipped with air independent propulsion," Journal of Environmental Monitoring, vol. 8, pp. 1111-1121, 2006.
[8]N. C. J. Chen and C. D. West, "A single-cylinder valveless heat engine," in The 22th Intersociety Energy Conversion Engineering Conference, 1987.
[9]P. L. Tailer, "External combustion Otto cycle thermal lag engine," in The 28th Intersociety Energy Conversion Engineering Conference, pp. 943-947, 1993.
[10]P. L. Tailer, "Thermal lag machine," U.S. Patents, No.5414997, 1995.
[11]P. L. Tailer, "Thermal lag test engines evaluated and compared to equivalent Stirling engines," in The 30th Intersociety Energy Conversion Engineering Conference, pp. 353-357, 1995.
[12]K. Hamaguchi, Y. Ushijima, and Y. Hiratsuka, "Basic characteristics of pulse tube engine," Proceedings of the 12th ISection, pp. 275-84, 2005.
[13]A. J. Organ, The Air Engine: Stirling Cycle Power for a Sustainable Future: Elsevier, 2007.
[14]K. Hamaguchi, H. Futagi, T. Yazaki, and Y. Hiratsuka, "Measurement of work generation and improvement in performance of a pulse tube engine," Journal of Power and Energy Systems, vol. 2, pp. 1267-1275, 2008.
[15]T. Yoshida, T. Yazaki, H. Futaki, K. Hamaguchi, and T. Biwa, "Work flux density measurements in a pulse tube engine," Applied Physics Letters, vol. 95, p. 044101, 2009.
[16]周秉毅, "脈衝管史特靈引擎之設計與理論模式," 國立成功大學航空太空工程學系碩士學位論文, 2013.
[17]F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer: Cengage Learning, 2001.
[18]J. L. Meriam and L. G. Kraige, Engineering mechanics: Dynamics vol. 2: John Wiley & Sons, 2012.
[19]I. Urieli, C. J. Rallis, and D. M. Berchowitz, "Computer simulation of Stirling cycle machines," in The 12th Intersociety Energy Conversion Engineering Conference, pp. 1512-1521, 1977.
[20]N. Parlak, A. Wagner, M. Elsner, and H. S. Soyhan, "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, vol. 34, pp. 266-273, 2009.
[21]林強, "300-W 級史特靈引擎理論模式與實作," 國立成功大學航空太空工程學系碩士學位論文, 2012.
[22]W. Peiyi and W. Little, "Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators," Cryogenics, vol. 23, pp. 273-277, 1983.
[23]B. Thomas and D. Pittman, "Update on the evaluation of different correlations for the flow friction factor and heat transfer of Stirling engine regenerators," in The 35th Energy Conversion Engineering Conference and Exhibit, pp. 76-84, 2000.
[24]R. Shah and A. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, Supl. 1, Academic Press, New York, 1978.
[25]R. F. Barron, G. Nellis, and J. M. Pfotenhauer, Cryogenic Heat Transfer: CRC Press, 1999.
[26]C.-H. Cheng and H.-S. Yang, "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, vol. 49, pp. 218-228, 2013.
[27]C.-H. Cheng, H.-S. Yang, B.-Y. Jhou, Y.-C. Chen, and Y.-J. Wang, "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, vol. 108, pp. 466-476, 2013.
[28]S. Moldenhauer, "Analytical model of the pulse tube engine," Energy, vol. 62, pp. 285-299, 2013.
[29]S. Moldenhauer, T. Stark, C. Holtmann, and A. Thess, "The pulse tube engine: A numerical and experimental approach on its design, performance, and operating conditions," Energy, vol. 55, pp. 703-715, 2013.
[30]M. Tanaka, I. Yamashita, and F. Chisaka, "Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow," JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, vol. 33, pp. 283-289, 1990.
[31]S. Costa, H. Barrutia, J. A. Esnaola, and M. Tutar, "Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator," Energy Conversion and Management, vol. 67, pp. 57-65, 2013.
[32]A. J. Organ, Thermodynamics and Gas Dynamics of the Stirling Cycle Machine: Cambridge University Press, 1992.
[33]J. Nocedal and S. J. Wright, Conjugate Gradient Methods: Springer, 2006.
[34]J. Fliege and B. F. Svaiter, "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, vol. 51, pp. 479-494, 2000.
[35]R. W. Wedderburn, "Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method," Biometrika, vol. 61, pp. 439-447, 1974.
[36]C.-H. Cheng and M.-H. Chang, "A simplified conjugate-gradient method for shape identification based on thermal data," Numerical Heat Transfer: Part B: Fundamentals, vol. 43, pp. 489-507, 2003.