簡易檢索 / 詳目顯示

研究生: 李依貞
Li, Yi-Chen
論文名稱: Ad-Hoc網路壅塞控制最佳化
Optimal Congestion Control for an Ad-Hoc Network
指導教授: 許瑞麟
Sheu, Ruey-Lin
共同指導教授: 郭文光
Kuo, Wen-Kuang
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 68
中文關鍵詞: Ad-hoc網路壅塞控制跨層資源管理最佳化最大最小問題分數型規劃問題熵正則化
外文關鍵詞: Ad-hoc Network, Congestion Control, Cross Layer, Resource Allocation, Optimization, Minimax Problem, Fractional Programs, Entropic Regularization
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們主要針對Ad-hoc無線網路之壅塞控制問題做最佳化的研究與探討。首先,我們根據功率控制和點對點流量分配的問題,將Ad-hoc多重跳躍的跨層資源管理用數學模型表示。接下來,觀察我們所建立的數學模型:在限制式方面,通道容量為一個非凸的限制式;而在目標函數方面,它是一個最大最小分數型規劃問題,這兩個問題是解決此數學模型的困難所在。然而,資源分配的公平性是影響最大最小分數型規劃問題的重點所在。

    在這裡,我們應用局部線性逼近法(LLAM)來處裡通道容量的問題,並且運用熵正則化演算法(MDER)來處裡最大最小分數型規劃問題。此外,我們還結合一些重要的限制式來控制壅塞水平的變化及資源分配的公平性,使得整個系統變得更加穩定。

    最後,我們將呈現實驗數據來表示網路的壅塞狀況可以被有效的改善。

    In this thesis, we focus on the optimal congestion control of the wireless ad-hoc network. First, we formulate the multi-hop cross layer resource management problem by finding the jointly optimal power allocation and end-to-end communication rates of an ad-hoc network. Secondly, by the analysis of the congestion control model, non-convex capacity formulas and the minimax fractional objective are the two major technical difficulties for solving the model. However, the fairness of resource allocation is the key idea for solving the minimax fractional problem.

    Our idea is to design a locally linear approach method (LLAM) to approximate the non-convex capacity and apply the modified Dinkelbach entropic regularization (MDER) method to cope with the minimax fractional programming. In addition, by adding some additional constraints, we can control the fairness of resource allocations to achieve steadiness in the entire system.

    Finally, our numerical results indicate that the congestion can be relieved efficiently.

    1 Introduction 7 2 System Model and Problem Formulation 13 2.1 AD-HOC Network System . . . . . . . . . . . . . . . . . 13 2.2 Network Topology . . . . . . . . . . . . . . . . . . . . . 15 2.3 Decision Variables . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Power Constraints . . . . . . . . . . . . . . . . . 17 2.4.2 Capacity Constraints . . . . . . . . . . . . . . . . 17 2.4.3 Flow Conservation . . . . . . . . . . . . . . . . . 19 2.5 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Mathematical Analysis of the Model . . . . . . . . . . . 22 2.7.1 Capacity Formula . . . . . . . . . . . . . . . . . . 22 2.7.2 Fractional Problem . . . . . . . . . . . . . . . . . 23 3 Solution Method 25 3.1 Outer Loop . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Locally Linear Approach Method (LLAM) . . . . 26 3.1.2 Main Flow Chart for the Solution Method of the Outer Loop . . . . . . . . . . . . . . . . . . . . . 31 3.2 Inner Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 Fractional Programming . . . . . . . . . . . . . . 33 3.2.2 Dinkelbach Entropic Regularization for the Con- gestion Control Model . . . . . . . . . . . . . . . 35 3.2.3 Main Flow Chart for the Solution Method of the Inner Loop . . . . . . . . . . . . . . . . . . . . . 47 3.3 Main Flow Chart for Solving the Model . . . . . . . . . . 49 4 Numerical Result 51 4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Some Topology Results . . . . . . . . . . . . . . . . . . . 56 5 Conclusion 65 5.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . 66 Bibliography 67

    [1] A. Auslender. Penalty and barrier mehods: A uni ed framwork. SIAM Journal on optimization,
    10:211-230, 1999.
    [2] A. Ben-Tal and M. Teboulle. A smoothing technique for nondifferentiable optimization problems.
    Lecture Notes in Mathematics, Springer-Verlag, Berlin, Germany, 1405:1-11, 1989.
    [3] L. Bui, A. Ery?lmaz, and R. Srikant. Joint asynchronous congestion control and distributed schedul-
    ing for multi-hop wireless networks. Department of Electrical and Computer Engineering.
    [4] P. L. Chang. A minimax approach to nonlinear programming. Doctoral Dissertation, Department
    of Mathematics, University of Washington, 1980.
    [5] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Optimal cross-layer congestion control, routing
    and scheduling design in ad hoc wireless network.
    [6] M. Chiang. To layer or not to layer: Balancing transport and physical layers in wireless multihop
    networks. IEEE Infocom, 4, 2004.
    [7] M. Chiang, C. W. Tan, D. P. Palomar, D. O'Neill, and D. Julian. Power control by geometric
    programming. IEEE Transactions on Wireless Communications, 6(7):2640-2651, 2007.
    [8] J. P. Crouzeix, J. A. Ferland, and S. Schaible. Duality in generalized linear fractional programming.
    Mathematical programming, 27(3):342-354, 1983.
    [9] J. P. Crouzeix, J. A. Ferland, and S. Schaible. An algorithm for generalized fractional programs.
    Journal of Optimization Theory and Applications, 50:183-187, 1986.
    [10] W. Dinkelbach. On nonlinear fractional programming. Management Science, 13:492-498, 1967.
    [11] R. M. et al. Cross-layer design for lifetime maximization in interference-limited wireless sensor
    networks. EEE Infocom, 2005.
    [12] A. Host-Madsen. On the capacity of wireless relaying. Electrical Engineering.
    [13] B. Johansson, P. Soldati, and M. Johansson. Mathematical decomposition techniques for distributed
    cross-layer optimization of data networks. IEEE Journal on Selected Areas in Communications,
    24(8):1535-1547, 2006.
    [14] M. Johansson and L. Xiao. Cross-layer optimization of wireless networks using nonlinear column
    generation. IEEE Transactions on Wireless Communications, 5(2):435-445, 2006.
    [15] S. S. Ju. Optimal resources allocation for a cognitive network. Master's thesis, NCKU, 2009.
    [16] S. J. Kim, X. Wang, and M. Madihian. Cross-layer design of wireless multihop backhaul networks
    with multiantenna beamforming. IEEE Trans. Mob. Comput, 6(11):1259-1269, 2007.
    [17] X. S. Li and S. C. Fang. On the entropic regularization method for solving min-max problems with
    applications. Zeischrift fur Operation Research, 46:119-160, 1997.
    [18] J. Y. Lin and R. L. Sheu. Modi ed dinkelbach-type algorithm for generalized fractional programs
    with in nitely many ratios. Journal of Optimization Theory and Application, 126(2):323-343, 2005.
    [19] J. Papandriopoulos, S. Dey, and J. Evans. Optimal and distributed protocols for cross-layer design
    of physical and transport layers in manets. IEEE Trans. on Networking, 16(6):1392-1405, 2008.
    [20] M. J. D. Powell. An e cient method for nding the minimum of a function of several variables
    without calculating derivatives. The Computer Journal, 7:155-162, 1964.
    [21] M. L. Sichitiu. ross-layer scheduling for power efficiency in wireless sensor networks. IEEE Infocom,
    2004.
    [22] G. W. Steward. A modi cation of davidon's minimization method to accept difference approxima-
    tions of derivatives. Journal of the Association for Computing Machinery, 14:72-83, 1967.
    [23] I. Zang. A smooth-out technique for min-max problem. Management Programming, 19:61-77, 1980.

    下載圖示 校內:2018-08-28公開
    校外:2015-08-03公開
    QR CODE